Method for determination of the fourth-rank zero field splitting parameters from the zero field energy levels for spin <(S)over tilde>=2 systems - Case studies: Fe2+ ions in [Fe(H2O)6](NH4)2(SO4)2 and forsterite (Fe2+:Mg2SiO4), and Cr2+ ions in (ND4)2Cr(D2O)6(SO4)2 and Rb2Cr(D2O)6(SO4)2

被引:1
|
作者
Kozanecki, Michal [1 ]
Rudowicz, Czeslaw [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Chem, Umultowska 89B, PL-61614 Poznan, Poland
关键词
High-magnetic field; Electron magnetic resonance; Zero-field splitting; Fe2+; Cr2+; S=2 ion; ELECTRON-PARAMAGNETIC-RESONANCE; HIGH-FREQUENCY; FERROUS ION; MAGNETIC-PROPERTIES; HAMILTONIAN PARAMETERS; S=2 IONS; COMPLEXES; STANDARDIZATION; SPECTROSCOPY; PRESSURE;
D O I
10.1016/j.jmmm.2019.165670
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent developments in high-magnetic field/high-frequency electron magnetic resonance (HMF-EMR) techniques offer improved capabilities for determination of the spin Hamiltonian (SH) parameters, including the fourth-rank zero field splitting (ZFS) parameters (ZFSPs) for spin (S) over tilde = 2 systems. However, the density functional theory (DFT) and ab-initio methods provide predictions of the ZFS energies from which usually only the second-rank ZFSPs are obtained. Here we present an analytical method for determination of the fourth-rank ZFSPs from the ZFS energy levels for (S) over tilde = 2 ions at orthorhombic sites. This enables assessment of their significance and determination of the dominant parameters. Applications of this method for Fe2+ in [Fe(H2O)(6)](NH4)(2)(SO4)(2), Fe2+ in forsterite (Fe2+:Mg2SiO4), and Cr2+ ions in (ND4)(2)Cr(D2O)(6)(SO4)(2) and Rb2Cr(D2O)(6)(SO4)(2) indicate an important role of the fourth-rank ZFSPs. The analytical formulas derived by us may be applied to other 3d(6) and 3d(4) ((S) over tilde = 2) ions at orthorhombic sites in various hosts for better modeling of spectroscopic and magnetic properties of these systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] ON THERMAL BEHAVIOUR AND CRYSTALLOGRAPHY OF DOUBLE SALTS OF NA2CR2+(SO4)2.2H2O, NA2MN2+(SO4)2.H2O, NA2CU2+(SO4)2.H2O AND NA2CD+(SO4)2.H2O SERIES
    COT, L
    PEYTAVIN, S
    MAURIN, M
    REVUE DE CHIMIE MINERALE, 1970, 7 (03): : 551 - &
  • [32] K2S2O7-K2SO4-FE2(SO4)3 SYSTEM
    KHOLOSTOV, SB
    KOSTIN, LP
    MOCHALOV, KI
    GAGARIN, SF
    ZHURNAL NEORGANICHESKOI KHIMII, 1978, 23 (08): : 2260 - 2263
  • [33] (NH4)3[VO2(SO4)2(H2O)2]•1.5H2O
    Hashimoto, M
    Kubata, M
    Yagasaki, A
    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 2000, 56 : 1411 - 1412
  • [34] Synthesis and crystal structures of [Al(H2O)6](SO4)NO3•2H2O and [Al(H2O)6](SO4)Cl•H2O
    Svensson, Fredric G.
    ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2021, 77 : 58 - +
  • [35] Rietveld refinement of the Tutton salt K2[Fe(H2O)6](SO4)2
    Ballirano, P
    Belardi, G
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2006, 62 : I58 - I60
  • [36] Modeling of H2SO4-FeSO4-H2O and H2SO4-Fe2(SO4)3-H2O systems for metallurgical applications
    Kobylin, Petri
    Kaskiala, Toni
    Salminen, Justin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (08) : 2601 - 2608
  • [37] Phase transition in K2Fe(SO4)2•4H2O
    Ishigami, H
    Sumita, M
    Shiro, M
    Hikita, T
    Sato, S
    Tanimoto, M
    FERROELECTRICS, 2003, 285 : 507 - 511
  • [38] SPIN REORIENTATION IN MANGANESE TUTTON SALT MN(NH4)2(SO4)2-6H2O
    TSURU, K
    URYU, N
    JOURNAL OF CHEMICAL PHYSICS, 1975, 63 (09): : 4090 - 4091
  • [39] INTERACTION IN FE2(SO4)3-K2SO4-H2O SYSTEM
    MARYANCHIK, LV
    ZAPOLSKII, AK
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1974, 47 (06): : 1444 - 1445
  • [40] MOSSBAUER STUDY OF THE THERMAL-DECOMPOSITION OF CO-PRECIPITATED FE(NH4)2(SO4)2.6H2O AND NI(NH4)2(SO4)2.6H2O
    PEEV, TM
    BOZADJIEV, L
    STOILOVA, T
    NIKOLOV, S
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 1984, 85 (03) : 151 - 161