A DATA-DRIVEN MIXTURE KERNEL FOR COUNT DATA CLASSIFICATION USING SUPPORT VECTOR MACHINES

被引:7
|
作者
Bouguila, Nizar [1 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1T7, Canada
关键词
D O I
10.1109/MLSP.2008.4685450
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the problem of training support vector machines (SVMs) on count data. Multinomial generalized Dirichlet mixture models allow us to model efficiently count data. On the other hand, SVMs permit good discrimination. We propose, then, a hybrid model that appropriately combines their advantages. Finite mixture models are introduced, as an SVM kernel, to incorporate prior knowledge about the nature of data involved in the problem at hand. In the context of this model, we compare different kernels. Through an application involving image database categorization, we find that our data-driven kernel performs better.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [21] Support Vector Machines, Data Reduction, and Approximate Kernel Matrices
    Nguyen, XuanLong
    Huang, Ling
    Joseph, Anthony D.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS, 2008, 5212 : 137 - 153
  • [22] A Data Complexity Approach to Kernel Selection for Support Vector Machines
    Valerio, Roberto
    Vilalta, Ricardo
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 3138 - 3139
  • [23] Kernel Based Data-Adaptive Support Vector Machines for Multi-Class Classification
    Shao, Jianli
    Liu, Xin
    He, Wenqing
    MATHEMATICS, 2021, 9 (09)
  • [24] Fusion of support vector machines for classification of multisensor data
    Waske, Bjoern
    Benediktsson, Jo Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 3858 - 3866
  • [25] Data mining with parallel support vector machines for classification
    Eitrich, Tatjana
    Lang, Bruno
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2006, 4243 : 197 - 206
  • [26] Classification of fuzzy data based on the support vector machines
    Forghani, Yahya
    Yazdi, Hadi Sadoghi
    Effati, Sohrab
    EXPERT SYSTEMS, 2013, 30 (05) : 403 - 417
  • [27] Classification of electronic nose data with support vector machines
    Pardo, M
    Sberveglieri, G
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 107 (02): : 730 - 737
  • [28] Gene selection and classification using non-linear kernel support vector machines based on gene expression data
    Zhang Qizhong
    2007 IEEE/ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, VOLS 1-4, 2007, : 1606 - 1611
  • [29] WEIGHTED SUPPORT VECTOR MACHINES FOR TREE SPECIES CLASSIFICATION USING LIDAR DATA
    Hoang Minh Nguyen
    Demir, Beguem
    Dalponte, Michele
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6740 - 6743
  • [30] Efficient and Robust Classification of Seismic Data using Nonlinear Support Vector Machines
    Hickmann, Kyle S.
    Hyman, Jeffrey
    Srinivasan, Gowri
    2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 148 - 155