The Hamiltonian theory of zero-curvature equations with spectral parameter on an arbitrary compact Riemann surface is constructed. It is shown that the equations can be seen as commuting flows of an infinite-dimensional field generalization of the Hitchin system. The field analog of the elliptic Calogero-Moser system is proposed. An explicit parameterization of Hitchin system based on the Tyurin parameters for stable holomorphic vector bundles on algebraic curves is obtained.
机构:
Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Inst Math, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
Kucharz, Wojciech
Kurdyka, Krzysztof
论文数: 0引用数: 0
h-index: 0
机构:
Univ Savoie Mont Blanc, Lab Math, UMR CNRS 5127, Campus Sci, F-73376 Le Bourget Du Lac, FranceJagiellonian Univ, Inst Math, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
Kurdyka, Krzysztof
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2018,
745
: 105
-
154
机构:
NYU, Courant Inst, 251 Mercer Str, New York, NY 10012 USA
Natl Res Univ Higher Sch Econ, Dept Math, Lab Algebra Geometry, 6 Usacheva Str, Moscow 119048, RussiaNYU, Courant Inst, 251 Mercer Str, New York, NY 10012 USA
Bogomolov, Fedor A.
Lukzen, Elena
论文数: 0引用数: 0
h-index: 0
机构:
SISSA, Via Bonomea 265, I-34136 Trieste, ItalyNYU, Courant Inst, 251 Mercer Str, New York, NY 10012 USA