Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES

被引:70
|
作者
Doubaji, Siham [2 ]
Philippe, Bertrand [3 ]
Saadoune, Ismael [2 ,4 ]
Gorgoi, Mihaela [5 ]
Gustafsson, Torbjorn [1 ]
Solhy, Abderrahim [4 ]
Valvo, Mario [1 ]
Rensmo, Hakan [3 ]
Edstrom, Kristina [1 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, S-72121 Uppsala, Sweden
[2] Univ Cadi Ayyad, FST Marrakesh, LCME, Marrakech 40000, Morocco
[3] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[4] Univ Mohammed VI Polytech, Ctr Adv Mat, Ben Guerir, Morocco
[5] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany
基金
瑞典研究理事会;
关键词
electrochemistry; interfaces; photoelectron spectroscopy; reaction mechanisms; sodium; X-RAY PHOTOELECTRON; SOLID-ELECTROLYTE INTERPHASE; POSITIVE ELECTRODE; ELECTROCHEMICAL PROPERTIES; TRANSITION-METALS; HIGH-VOLTAGE; LIMO2; M; SPECTROSCOPY; LITHIUM; SURFACE;
D O I
10.1002/cssc.201501282
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cathode material P2-NaxCo2/3Mn2/9Ni1/9O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0V; all are in the 4+ state at the end of charging. Reduction to Co3+, Ni3+, and Mn3+ occurs upon discharging and, at low potential, there is partial reversible reduction to Co2+ and Ni2+. A thin layer of Na2CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5V), whereas fluorophosphates are produced at the end of discharging (2.0V).
引用
收藏
页码:97 / 108
页数:12
相关论文
共 50 条
  • [41] Polymer electrolytes for sodium-ion batteries
    Gebert, Florian
    Knott, Jonathan
    Gorkin, Robert, III
    Chou, Shu-Lei
    Dou, Shi-Xue
    ENERGY STORAGE MATERIALS, 2021, 36 : 10 - 30
  • [42] 2021 roadmap for sodium-ion batteries
    Tapia-Ruiz, Nuria
    Armstrong, A. Robert
    Alptekin, Hande
    Amores, Marco A.
    Au, Heather
    Barker, Jerry
    Boston, Rebecca
    Brant, William R.
    Brittain, Jake M.
    Chen, Yue
    Chhowalla, Manish
    Choi, Yong-Seok
    Costa, Sara I. R.
    Crespo Ribadeneyra, Maria
    Cussen, Serena A.
    Cussen, Edmund J.
    David, William I. F.
    Desai, Aamod, V
    Dickson, Stewart A. M.
    Eweka, Emmanuel, I
    Forero-Saboya, Juan D.
    Grey, Clare P.
    Griffin, John M.
    Gross, Peter
    Hua, Xiao
    Irvine, John T. S.
    Johansson, Patrik
    Jones, Martin O.
    Karlsmo, Martin
    Kendrick, Emma
    Kim, Eunjeong
    Kolosov, Oleg, V
    Li, Zhuangnan
    Mertens, Stijn F. L.
    Mogensen, Ronnie
    Monconduit, Laure
    Morris, Russell E.
    Naylor, Andrew J.
    Nikman, Shahin
    O'Keefe, Christopher A.
    Ould, Darren M. C.
    Palgrave, R. G.
    Poizot, Philippe
    Ponrouch, Alexandre
    Renault, Steven
    Reynolds, Emily M.
    Rudola, Ashish
    Sayers, Ruth
    Scanlon, David O.
    Sen, S.
    JOURNAL OF PHYSICS-ENERGY, 2021, 3 (03):
  • [43] Sodium-Ion Batteries Go Commercial
    Pappas, Stephanie
    CHEMICAL ENGINEERING PROGRESS, 2023, 119 (07) : 28 - 30
  • [44] PARTNERSHIP TARGETS SODIUM-ION BATTERIES
    不详
    CHEMICAL & ENGINEERING NEWS, 2016, 94 (07) : 16 - 16
  • [45] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    RareMetals, 2021, 40 (02) : 272 - 289
  • [46] Developing anodes for sodium-ion batteries
    Scott, Alex
    CHEMICAL & ENGINEERING NEWS, 2021, 99 (08) : 12 - 12
  • [47] Alloy anodes for sodium-ion batteries
    Zheng, Shu-Min
    Tian, Yan-Ru
    Liu, Ya-Xia
    Wang, Shuang
    Hu, Chao-Quan
    Wang, Bao
    Wang, Kai-Ming
    RARE METALS, 2021, 40 (02) : 272 - 289
  • [48] Research Development on Sodium-Ion Batteries
    Yabuuchi, Naoaki
    Kubota, Kei
    Dahbi, Mouad
    Komaba, Shinichi
    CHEMICAL REVIEWS, 2014, 114 (23) : 11636 - 11682
  • [49] Electrospinning for flexible sodium-ion batteries
    Wang, Jie
    Wang, Zhenzhu
    Ni, Jiangfeng
    Li, Liang
    ENERGY STORAGE MATERIALS, 2022, 45 : 704 - 719
  • [50] Sodium-Ion Batteries: Applications and Properties
    Baca, Petr
    Libich, Jiri
    Gazdosova, Sara
    Polkorab, Jaroslav
    BATTERIES-BASEL, 2025, 11 (02):