Student academic performance analysis using fuzzy C-means clustering

被引:0
|
作者
Rosadil, R. [1 ]
Akamal [1 ]
Sudrajat, R. [1 ]
Kharismawan, B. [2 ]
Hambali, Y. A. [3 ]
机构
[1] Padjadjaran State Univ, Dept Comp Sci, Sumedang 45363, Indonesia
[2] Padjadjaran State Univ, Dept Math, Sumedang 45363, Indonesia
[3] Inst Technol Bandung, STEL, Bandung 40132, Indonesia
关键词
D O I
10.1088/1757-899X/166/1/012036
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Grade Point Average (GPA) is commonly used as an indicator of academic performance. Academic performance evaluations is a basic way to evaluate the progression of student performance, when evaluating student's academic performance, there are occasion where the student data is grouped especially when the amounts of data is large. Thus, the pattern of data relationship within and among groups can be revealed. Grouping data can be done by using clustering method, where one of the methods is the Fuzzy C-Means algorithm. Furthermore, this algorithm is then applied to a set of student data form the Faculty of Mathematics and Natural Sciences, Padjadjaran University.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Mapping Student Performance With Employment Using Fuzzy C-Means
    Singh, Ishwank
    Sabitha, Sai
    Choudhury, Tanupriya
    Aggarwal, Archit
    Dewangan, Bhupesh Kumar
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2020, 11 (04) : 36 - 52
  • [2] Fuzzy Clustering Using C-Means Method
    Krastev, Georgi
    Georgiev, Tsvetozar
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2015, 4 (02): : 144 - 148
  • [3] Chronic Kidney Disease Using Fuzzy C-Means Clustering Analysis
    Kunwar, Vineeta
    Sabitha, A. Sai
    Choudhury, Tanupriya
    Aggarwal, Archit
    INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS, 2019, 6 (03) : 43 - 64
  • [4] Possibilistic C-Means Clustering Using Fuzzy Relations
    Zarandi, M. H. Fazel
    Kalhori, M. Rostam Niakan
    Jahromi, M. F.
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1137 - 1142
  • [5] Recommendation system using fuzzy C-means clustering
    Fang, KT
    Liu, CY
    INFORMATION TECHNOLOGY AND ORGANIZATIONS: TRENDS, ISSUES, CHALLENGES AND SOLUTIONS, VOLS 1 AND 2, 2003, : 137 - 139
  • [6] Random vector clustering using fuzzy c-means
    Hathaway, RJ
    Rogers, GW
    Bezdek, JC
    1998 CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1998, : 251 - 255
  • [7] Lane detection using fuzzy C-means clustering
    Kim, Kwang Baek
    Song, Doo Heon
    Cho, Jae-Hyun
    International Journal of Multimedia and Ubiquitous Engineering, 2012, 7 (04): : 119 - 124
  • [8] Fuzzy c-means for fuzzy hierarchical clustering
    Vicenc, T
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 646 - 651
  • [9] Performance Analysis of Fuzzy C-Means Clustering Methods for MRI Image Segmentation
    Choudhry, Mahipal Singh
    Kapoor, Rajiv
    TWELFTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2016 / TWELFTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2016 / TWELFTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2016, 2016, 89 : 749 - 758
  • [10] Mixed fuzzy C-means clustering
    Demirhan, Haydar
    INFORMATION SCIENCES, 2025, 690