Incremental network design with shortest paths

被引:39
|
作者
Baxter, Matthew [1 ]
Elgindy, Tarek [1 ]
Ernst, Andreas T. [1 ]
Kalinowski, Thomas [2 ]
Savelsbergh, Martin W. P. [2 ]
机构
[1] CSIRO, CSIRO Math Informat & Stat, Canberra, ACT, Australia
[2] Univ Newcastle, Callaghan, NSW 2308, Australia
关键词
Network design; Multi-period; Heuristic; Approximation algorithm; Integer programming; INFRASTRUCTURE SYSTEMS; RESTORATION;
D O I
10.1016/j.ejor.2014.04.018
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a class of incremental network design problems focused on investigating the optimal choice and timing of network expansions. We concentrate on an incremental network design problem with shortest paths. We investigate structural properties of optimal solutions, show that the simplest variant is NP-hard, analyze the worst-case performance of natural greedy heuristics, derive a 4-approximation algorithm, and conduct a small computational study. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:675 / 684
页数:10
相关论文
共 50 条
  • [41] ON ORIENTATIONS AND SHORTEST PATHS
    HASSIN, R
    MEGIDDO, N
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 : 589 - 602
  • [42] Updating shortest paths
    Edelkamp, S
    ECAI 1998: 13TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1998, : 655 - 659
  • [43] On Universal Shortest Paths
    Turner, Lara
    Hamacher, Horst W.
    OPERATIONS RESEARCH PROCEEDINGS 2010, 2011, : 313 - 318
  • [44] SHORTEST PATHS IN PORTALGONS
    Ophelders, Tim
    Loeffler, Maarten
    Silveira, Rodrigo I.
    Staals, Frank
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2024, 15 (02) : 174 - 221
  • [45] 3 ALGORITHMS FOR CALCULATING SOME OR ALL OF SHORTEST PATHS IN A SPARSE NETWORK
    WHITAKER, RA
    GEOGRAPHICAL ANALYSIS, 1977, 9 (03) : 266 - 277
  • [46] The K shortest transit paths choosing algorithm in stochastic transit network
    Zhao, Liyuan
    Xiong, Yiliang
    Sun, Hong
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, 2008, 5009 : 747 - +
  • [47] COMPUTATIONAL EXPERIENCE WITH AN ALGORITHM FOR FINDING K-SHORTEST PATHS IN A NETWORK
    SHIER, DR
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1974, B 78 (03): : 139 - 165
  • [48] RETRACTED: Shortest paths in a lattice network: a comparative study (Retracted Article)
    Ibrahim, IA
    Selim, SM
    COMPUTERS & OPERATIONS RESEARCH, 2001, 28 (11) : 1131 - 1139
  • [49] K-shortest paths and minimum spanning tree in traffic network
    Chen, J.-R. (chenjr@mail.lzjtu.cn), 1600, Editorial Department of Journal of Chang'an University (Natural Science Edition) (34):
  • [50] Finding the K shortest paths in a schedule-based transit network
    Xu, Wangtu
    He, Shiwei
    Song, Rui
    Chaudhry, Sohail S.
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (08) : 1812 - 1826