Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems

被引:250
|
作者
Fonfara, Ines [1 ,2 ]
Le Rhun, Anais [1 ,2 ]
Chylinski, Krzysztof [1 ,3 ]
Makarova, Kira S. [4 ]
Lecrivain, Anne-Laure [1 ]
Bzdrenga, Janek [1 ]
Koonin, Eugene V. [4 ]
Charpentier, Emmanuelle [1 ,2 ,5 ]
机构
[1] Umea Univ, Dept Mol Biol, Umea Ctr Microbial Res, Lab Mol Infect Med Sweden MIMS, S-90187 Umea, Sweden
[2] Helmholtz Ctr Infect Res, Dept Regulat Infect Biol, D-38124 Braunschweig, Germany
[3] Univ Vienna, Dept Biochem & Cell Biol, Max F Perutz Labs, A-1030 Vienna, Austria
[4] Natl Biotechnol Ctr, Natl Lib Med, NIH, Bethesda, MD 20894 USA
[5] Hannover Med Sch, D-30625 Hannover, Germany
基金
奥地利科学基金会; 瑞典研究理事会;
关键词
COLI RIBONUCLEASE-III; IMMUNE-SYSTEM; GENOME; GENERATION; EVOLUTION; INTERFERENCE; MUTAGENESIS; RESISTANCE; MULTIPLEX; FAMILIES;
D O I
10.1093/nar/gkt1074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA: crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA: Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool.
引用
收藏
页码:2577 / 2590
页数:14
相关论文
共 50 条
  • [41] CRISPR/Cas9: Prospects and Challenges
    Zhang, Feng
    HUMAN GENE THERAPY, 2015, 26 (07) : 409 - 410
  • [42] Anything impossible with CRISPR/Cas9?
    Renjie Jiao
    Caixia Gao
    Science China Life Sciences, 2017, 60 : 445 - 446
  • [43] Putting the brakes on CRISPR–Cas9
    Vesna Todorovic
    Nature Methods, 2017, 14 : 108 - 108
  • [44] Allergan dives into CRISPR–Cas9
    Nature Biotechnology, 2017, 35 : 296 - 296
  • [45] CRISPR/Cas9 in Gastrointestinal Malignancies
    Jefremow, Andre
    Neurath, Markus F.
    Waldner, Maximilian J.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [46] The Potential of CRISPR/Cas9 in Hematotherapy
    Bak, Rasmus O.
    STEM CELLS AND DEVELOPMENT, 2019, 28 (11) : 710 - 711
  • [47] CRISPR screens beyond Cas9
    Burgess, Darren J.
    NATURE REVIEWS GENETICS, 2020, 21 (05) : 273 - 273
  • [48] Bets Placed On CRISPR/Cas9
    Thayer, Ann
    CHEMICAL & ENGINEERING NEWS, 2015, 93 (48) : 16 - 16
  • [49] The tsunami named CRISPR/Cas9
    Chneiweiss, H.
    REVUE NEUROLOGIQUE, 2018, 174 (7-8) : 487 - 488
  • [50] Genome modification by CRISPR/Cas9
    Ma, Yuanwu
    Zhang, Lianfeng
    Huang, Xingxu
    FEBS JOURNAL, 2014, 281 (23) : 5186 - 5193