Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices

被引:130
|
作者
Chen, Zhaoshu [1 ]
Li, Yong [1 ]
Zhou, Wenjie [1 ]
Deng, Liqiang [1 ]
Yan, Yuying [2 ,3 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Nottingham, Fluids & Thermal Engn Res Grp, Fac Engn, Nottingham, England
[3] Univ Nottingham, Ctr Fluids & Thermal Engn Res, Ningbo, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Ultra-thin vapour chamber; Vapour-liquid channel separation; Mesh wick; Cooling module; Thermal performance; Heat dissipation; FLATTENED HEAT PIPES; MESH WICK;
D O I
10.1016/j.enconman.2019.03.038
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, a novel vapour-liquid channel-separated ultra-thin (0.4-mm-thick) vapour chamber fabricated via etching and diffusion bonding was designed for cooling electronic devices. The heat performance of ultra-thin vapour chamber was tested under five states, and micropillar arrays were etched into the chamber to study their effect on heat transfer. Additionally, infrared thermal imaging was performed to investigate the heat dissipation of cooling modules with and without the ultra-thin vapour chamber. The maximum heat transfer capacity of the ultra-thin vapour chamber in the horizontal state was 4.50 W, and the temperature difference was 4.75 degrees C. The experimentally measured values were very close to the theoretical capillary limit. Under normal and reverse gravities, the maximum heat transfer capacity changed by less than 11%. The effective thermal conductivity of the ultra-thin vapour chamber was 12000 W/(m.K), which is 30 times higher than that of pure copper. The cooling module with the ultra-thin vapour chamber exhibited better heat dissipation, thermal uniformity and thermal response properties. When the heating input power was 6 W, the heating block temperature, maximum surface temperature difference and equilibrium time of the cooling module with the ultra-thin vapour chamber were 8%, 54% and 32% lower, respectively, than those of the module without the ultra-thin vapour chamber. The proposed cooling solution is promising for heat dissipation problems in high-power portable electronic devices.
引用
收藏
页码:221 / 231
页数:11
相关论文
共 50 条
  • [1] Design and fabrication of an ultra-thin silicon vapor chamber for compact electronic cooling
    Struss, Quentin
    Coudrain, Perceval
    Colonna, Jean-Philippe
    Souifi, Abdelkader
    Gontrand, Christian
    Deschaseaux, Edouard
    Mauguen, Gaelle
    Mathieu, Vincent
    Magis, Thomas
    Simon, Gilles
    Frechette, Luc G.
    2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020), 2020, : 2259 - 2265
  • [2] A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices
    Huang, Guangwen
    Liu, Wangyu
    Luo, Yuanqiang
    Li, Yong
    APPLIED THERMAL ENGINEERING, 2020, 167 (167)
  • [3] Design, fabrication and thermal performance of a novel ultra-thin loop heat pipe with printed wick structure for mobile electronics cooling
    Chen, Anqi
    Jiang, Fan
    Dong, Jiajia
    Chen, Jeffrey
    Zhu, Yuan
    APPLIED THERMAL ENGINEERING, 2022, 200
  • [4] A novel ultra-thin vapor chamber based on graphite copper-clad film for thermal management in electronic devices
    Liang, Yifu
    Bai, Jingjing
    Liu, Xiaolong
    Xiao, Shengrong
    Yuan, Xuepeng
    Tang, Yong
    Yan, Caiman
    2023 24TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT, 2023,
  • [5] Thermal performance of ultra-thin vapor chamber with etched micro-structure for electronics cooling
    Yan, Wentao
    He, Xuehao
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 222
  • [6] A novel ultra-thin vapor chamber with composite wick for portable electronics cooling
    Yan, Caiman
    Li, Hongming
    Tang, Yong
    Ding, Xinrui
    Yuan, Xuepeng
    Liang, Yifu
    Zhang, Shiwei
    APPLIED THERMAL ENGINEERING, 2023, 226
  • [7] Experimental study on the thermal management performance of battery with ultra-thin vapor chamber under liquid cooling condition
    Li, Rui
    Gan, Yunhua
    Liang, Jialin
    Yi, Feng
    Li, Yong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 240
  • [8] A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices
    Zhou, Wenjie
    Li, Yong
    Chen, Zhaoshu
    Deng, Liqiang
    Gan, Yunhua
    ENERGY CONVERSION AND MANAGEMENT, 2019, 180 : 769 - 783
  • [9] Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices
    Mohammad Shahed Ahamed
    Yuji Saito
    Koichi Mashiko
    Masataka Mochizuki
    Heat and Mass Transfer, 2017, 53 : 3241 - 3247
  • [10] Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices
    Ahamed, Mohammad Shahed
    Saito, Yuji
    Mashiko, Koichi
    Mochizuki, Masataka
    HEAT AND MASS TRANSFER, 2017, 53 (11) : 3241 - 3247