A novel ultra-thin vapor chamber based on graphite copper-clad film for thermal management in electronic devices

被引:0
|
作者
Liang, Yifu [1 ]
Bai, Jingjing [1 ]
Liu, Xiaolong [1 ]
Xiao, Shengrong [1 ]
Yuan, Xuepeng [1 ]
Tang, Yong [1 ]
Yan, Caiman [1 ]
机构
[1] South China Univ Technol, Intelligent Mfg Engn Lab Funct Struct & Device Gu, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Heat dissipation; Ultra-thin vapor chamber; Graphite copper-clad film; Thermal resistance; Electronic device; FLAT HEAT-PIPE; GRAPHENE; PERFORMANCE; FABRICATION; CONDUCTIVITY;
D O I
10.1109/ICEPT59018.2023.10492054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As highly integrated and miniaturized power components rapidly develop, the extreme heat accumulation of electronic devices easily occurs, leading to an urgent demand for better thermal performance of heat dissipation devices. Besides, an efficient heat dissipation method was still essential for the development of flexible power components. Herein, a novel ultra-thin vapor chamber (UTVC) based on graphite copper-clad film with a thickness of only 0.68 mm was fabricated by a simple hot pressing process, and the composite wick structure was used as a capillarity-enhanced structure and a supporting structure for vapor flowing. The different filling liquid mass and test orientations of UTVC were both discussed. The surface temperature, temperature difference, thermal resistance, and thermal conductivity of UTVC were experimentally investigated, respectively. The UTVC could achieve a uniform surface temperature distribution (below 7.5 W), a low temperature difference (less than 2 degrees C at 6.5 W), a low thermal resistance (0.33 degrees C/ W at 6.5 W), and a high thermal conductivity (beyond 10000 W/(m center dot K)) under different orientations. Moreover, UTVC also showed wonderful flexibility, providing a potential application in the field of flexible folding. Further research will be carried out based on its flexibility.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices
    Huang, Guangwen
    Liu, Wangyu
    Luo, Yuanqiang
    Li, Yong
    APPLIED THERMAL ENGINEERING, 2020, 167 (167)
  • [2] Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices
    Chen, Zhaoshu
    Li, Yong
    Zhou, Wenjie
    Deng, Liqiang
    Yan, Yuying
    ENERGY CONVERSION AND MANAGEMENT, 2019, 187 : 221 - 231
  • [3] Experimental investigation on battery thermal management with ultra-thin vapor chamber
    Yi, Feng
    Gan, Yunhua
    Li, Rui
    APPLIED THERMAL ENGINEERING, 2024, 244
  • [4] A novel ultra-thin 90° bent vapor chamber for heat dissipation in multi-heat source electronic devices
    Bai, Jingjing
    Liang, Yifu
    Qiu, Huarong
    Zhao, Yincai
    Zhang, Shiwei
    Luo, Fangqiong
    2023 24TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT, 2023,
  • [5] Experimental Investigation on Ultra-Thin Vapor Chamber with Composite Wick for Electronics Thermal Management
    Zhang, Shiwei
    Huang, Haoyi
    Bai, Jingjing
    Yan, Caiman
    Qiu, Huarong
    Tang, Yong
    Luo, Fangqiong
    MICROMACHINES, 2024, 15 (05)
  • [6] A new ultra-thin vapor chamber with composite wick for thin electronic products
    Huang, Guangwen
    Liu, Wangyu
    Luo, Yuanqiang
    Li, Yong
    Chen, Hanyin
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 170
  • [7] Thermal and hydraulic analysis of ultra-thin vapor chamber with copper columns considering Marangoni effect
    Huang, Zhe
    Li, Deqiang
    Zhao, Jing
    Jian, Qifei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 184
  • [8] Design and fabrication of an ultra-thin silicon vapor chamber for compact electronic cooling
    Struss, Quentin
    Coudrain, Perceval
    Colonna, Jean-Philippe
    Souifi, Abdelkader
    Gontrand, Christian
    Deschaseaux, Edouard
    Mauguen, Gaelle
    Mathieu, Vincent
    Magis, Thomas
    Simon, Gilles
    Frechette, Luc G.
    2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020), 2020, : 2259 - 2265
  • [9] Heat transfer performance of ultra-thin vapor chambers with composite wick for electronic thermal management
    Yan, Wentao
    He, Xuehao
    Wang, Shuangfeng
    Chen, Kai
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2025, 57
  • [10] A non-contact thermal testing system for ultra-thin vapor chamber
    Jiang, Xinyue
    Chen, Anqi
    Jiang, Fan
    Guo, Wei
    Lv, You
    Sun, Qi
    Cui, Wei
    Lee, Fang-Shou
    Zhu, Yuan
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (12):