On the choice of degrees of freedom for testing gene-gene interactions
被引:6
|
作者:
Ueki, Masao
论文数: 0引用数: 0
h-index: 0
机构:
Tohoku Univ, Grad Sch Med, Tohoku Med Megabank Org, Aoba Ku, Sendai, Miyagi 9808573, JapanTohoku Univ, Grad Sch Med, Tohoku Med Megabank Org, Aoba Ku, Sendai, Miyagi 9808573, Japan
Ueki, Masao
[1
]
机构:
[1] Tohoku Univ, Grad Sch Med, Tohoku Med Megabank Org, Aoba Ku, Sendai, Miyagi 9808573, Japan
decomposition of type I error;
degrees of freedom;
gene-gene interaction;
prospective sampling;
retrospective sampling;
MULTIFACTOR-DIMENSIONALITY REDUCTION;
ASSOCIATION;
SELECTION;
TOOL;
D O I:
10.1002/sim.6264
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In gene-gene interaction analysis using single nucleotide polymorphism (SNP) data, empty cells arise in the genotype contingency table more frequently than in single SNP association studies. Empty cells lead to unidentifiable regression coefficients in regression model fitting. It is unclear whether the degrees of freedom (d.f.) for testing interactions are reduced for such sparse contingency tables. BooleanOperation based Screening and Testing is an exhaustive gene-gene interaction search method in which a fixed d.f. of four (the most conservative choice) is used in the chi-squared null distribution for the likelihood ratio test for gene-gene interactions under a logistic regression model. In this paper, the choice of d. f. is investigated theoretically by introducing a decomposition of type I error. An adaptive method using the observed d. f. can be less conservative than the fixed d. f. method, thereby enhancing power. In simulated data, type I error rates for the adaptive method were usually better controlled under various scenarios for Gaussian linear regression and logistic regression, including prospective and retrospective sampling designs, as well as for artificial data that mimic actual genome-wide SNPs. When the adaptive method was applied to public datasets generated from simulations, it exhibited an improvement in power over the fixed method. Copyright (C) 2014 John Wiley & Sons, Ltd.
机构:
Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South KoreaSookmyung Womens Univ, Dept Stat, Seoul, South Korea
Kwon, Min-Seok
Oh, Sohee
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Stat, Seoul, South KoreaSookmyung Womens Univ, Dept Stat, Seoul, South Korea
Oh, Sohee
Park, Taesung
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
Seoul Natl Univ, Dept Stat, Seoul, South KoreaSookmyung Womens Univ, Dept Stat, Seoul, South Korea
机构:
Univ Texas Southwestern Med Ctr Dallas, Quantitat Biomed Res Ctr, Dallas, TX 75390 USAUniv Texas Southwestern Med Ctr Dallas, Quantitat Biomed Res Ctr, Dallas, TX 75390 USA
Lee, Sangin
Pawitan, Yudi
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, SwedenUniv Texas Southwestern Med Ctr Dallas, Quantitat Biomed Res Ctr, Dallas, TX 75390 USA
Pawitan, Yudi
论文数: 引用数:
h-index:
机构:
Ingelsson, Erik
Lee, Youngjo
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Stat, San56-1 Shin Lim Dong, Seoul 151747, South KoreaUniv Texas Southwestern Med Ctr Dallas, Quantitat Biomed Res Ctr, Dallas, TX 75390 USA
机构:
Univ Newcastle, Inst Human Genet, Int Ctr Life, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, EnglandUniv Newcastle, Inst Human Genet, Int Ctr Life, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, England
机构:Université d'Evry Val d'Essonne, Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, 23 bvd de France, Evry Cedex, Paris
Stanislas, Virginie
Dalmasso, Cyril
论文数: 0引用数: 0
h-index: 0
机构:Université d'Evry Val d'Essonne, Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, 23 bvd de France, Evry Cedex, Paris
Dalmasso, Cyril
Ambroise, Christophe
论文数: 0引用数: 0
h-index: 0
机构:Université d'Evry Val d'Essonne, Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, 23 bvd de France, Evry Cedex, Paris