On the perturbative equivalence between the Hamiltonian and Lagrangian quantizations

被引:8
|
作者
Batalin, IA
Tyutin, IV
机构
[1] Lebedev Physical Institute, Moscow
来源
关键词
D O I
10.1142/S0217751X96000626
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Hamiltonian (BFV) and Lagrangian (BV) quantization schemes are proved to be perturbatively equivalent to each other. It is shown in particular that the quantum master equation being treated perturbatively possesses a local formal solution.
引用
收藏
页码:1353 / 1366
页数:14
相关论文
共 50 条
  • [21] ON LAGRANGIAN AND HAMILTONIAN FORMALISM
    NAMBU, Y
    PROGRESS OF THEORETICAL PHYSICS, 1952, 7 (02): : 131 - 170
  • [22] Lagrangian and Hamiltonian Duality
    Rossi O.
    Saunders D.
    Journal of Mathematical Sciences, 2016, 218 (6) : 813 - 819
  • [23] LAGRANGIAN AND HAMILTONIAN CONSTRAINTS
    BATLLE, C
    GOMIS, J
    PONS, JM
    ROMAN, N
    LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (01) : 17 - 23
  • [24] Hamiltonian analysis for perturbative λR gravity
    Escalante, Alberto
    Ocana-Garcia, P. Fernando
    ANNALS OF PHYSICS, 2024, 465
  • [25] Invariants for the Lagrangian equivalence problem
    Castrillon Lopez, M.
    Munoz Masque, J.
    Rosado Maria, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 419 - 435
  • [26] LAGRANGIAN AND HAMILTONIAN ROCKET MECHANICS
    PUNGA, V
    AIAA JOURNAL, 1963, 1 (03) : 709 - 711
  • [27] Hamiltonian stationary Lagrangian fibrations
    Legendre, Eveline
    Rollin, Yann
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (03) : 753 - 791
  • [28] Nonconservative Lagrangian and Hamiltonian mechanics
    Riewe, F
    PHYSICAL REVIEW E, 1996, 53 (02): : 1890 - 1899
  • [29] CONTACT EQUIVALENCE FOR LAGRANGIAN SUBMANIFOLDS
    GOLUBITS.M
    GUILLEMI.VW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A207 - A207
  • [30] Geometric Interpretation of Lagrangian Equivalence
    Izumiya, Shyuichi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04): : 806 - 812