NUMERICAL APPROXIMATION OF FIRST KIND VOLTERRA CONVOLUTION INTEGRAL EQUATIONS WITH DISCONTINUOUS KERNELS

被引:10
|
作者
Davies, Penny J. [1 ]
Duncan, Dugald B. [2 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Volterra integral equations; discontinuous kernel; time delay;
D O I
10.1216/JIE-2017-29-1-41
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The cubic "convolution spline" method for first kind Volterra convolution integral equations was introduced in P.J. Davies and D.B. Duncan, Convolution spline approximations of Volterra integral equations, Journal of Integral Equations and Applications 26 (2014), 369-410. Here, we analyze its stability and convergence for a broad class of piecewise smooth kernel functions and show it is stable and fourth order accurate even when the kernel function is discontinuous. Key tools include a new discrete Gronwall inequality which provides a stability bound when there are jumps in the kernel function and a new error bound obtained from a particular B-spline quasi-interpolant.
引用
收藏
页码:41 / 73
页数:33
相关论文
共 50 条
  • [31] Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels
    Hoppensteadt, F. C.
    Jackiewicz, Z.
    Zubik-Kowal, B.
    BIT NUMERICAL MATHEMATICS, 2007, 47 (02) : 325 - 350
  • [32] Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels
    F.C. Hoppensteadt
    Z. Jackiewicz
    B. Zubik-Kowal
    BIT Numerical Mathematics, 2007, 47 : 325 - 350
  • [33] Numerical solution of nonlinear fuzzy Volterra integral equations of the second kind for changing sign kernels
    Saberirad, F.
    Karbassi, S. M.
    Heydari, M.
    SOFT COMPUTING, 2019, 23 (21) : 11181 - 11197
  • [34] Numerical solution of nonlinear fuzzy Volterra integral equations of the second kind for changing sign kernels
    F. Saberirad
    S. M. Karbassi
    M. Heydari
    Soft Computing, 2019, 23 : 11181 - 11197
  • [35] Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel
    Sidorov, D. N.
    Tynda, A. N.
    Muftahov, I. R.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (03): : 107 - 115
  • [36] Study of numerical treatment of functional first-kind Volterra integral equations
    Falah, Hassanein
    Darania, Parviz
    Pishbin, Saeed
    AIMS MATHEMATICS, 2024, 9 (07): : 17414 - 17429
  • [37] Numerical Solution of Volterra Integral Equations of First Kind by Using a Recursive Scheme
    Maleknejad, K.
    Roodaki, M.
    Almasieh, H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2009, 3 (02) : 113 - 121
  • [38] Theoretical and numerical analysis of third-kind auto-convolution Volterra integral equations
    Li, Yuping
    Yang, Zhanwen
    Zhang, Chiping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [39] Theoretical and numerical analysis of third-kind auto-convolution Volterra integral equations
    Yuping Li
    Zhanwen Yang
    Chiping Zhang
    Computational and Applied Mathematics, 2019, 38