Digital Twin for rotating machinery fault diagnosis in smart manufacturing

被引:346
|
作者
Wang, Jinjiang [1 ]
Ye, Lunkuan [1 ]
Gao, Robert X. [2 ]
Li, Chen [1 ]
Zhang, Laibin [1 ]
机构
[1] China Univ Petr, Sch Mech & Transportat Engn, Beijing 102249, Peoples R China
[2] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Cleveland, OH 44106 USA
基金
中国国家自然科学基金;
关键词
Digital Twin; digital manufacturing; cyber-physical system; fault diagnosis; CYBER-PHYSICAL SYSTEMS; BIG DATA; PROGNOSIS; FUTURE; TOOLS; MODEL;
D O I
10.1080/00207543.2018.1552032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With significant advancement in information technologies, Digital Twin has gained increasing attention as it offers an enabling tool to realise digitally-driven, cloud-enabled manufacturing. Given the nonlinear dynamics and uncertainty involved during the process of machinery degradation, proper design and adaptability of a Digital Twin model remain a challenge. This paper presents a Digital Twin reference model for rotating machinery fault diagnosis. The requirements for constructing the Digital Twin model are discussed, and a model updating scheme based on parameter sensitivity analysis is proposed to enhance the model adaptability. Experimental data are collected from a rotor system that emulates an unbalance fault and its progression. The data are then input to a Digital Twin model of the rotor system to investigate its ability of unbalance quantification and localisation for fault diagnosis. The results show that the constructed Digital Twin rotor model enables accurate diagnosis and adaptive degradation analysis.
引用
收藏
页码:3920 / 3934
页数:15
相关论文
共 50 条
  • [21] Fault diagnosis of rotating machinery by neural networks
    Ligteringen, R
    Ypma, A
    Duin, RPW
    Frietman, EEE
    NEURAL NETWORKS: BEST PRACTICE IN EUROPE, 1997, 8 : 161 - 164
  • [22] AR model for diagnosis of rotating machinery fault
    Huang, Shi-Hong
    Chen, Yong
    Gao, Wei
    Qilunji Jishu/Turbine Technology, 2001, 43 (06):
  • [23] A review of fault diagnosis methods for rotating machinery
    Shi, Zhenjin
    Li, Yueyang
    Liu, Shuai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1618 - 1623
  • [24] A new fault diagnosis method of rotating machinery
    Chen, Chih-Hao
    Shyu, Rong-Juin
    Ma, Chih-Kao
    SHOCK AND VIBRATION, 2008, 15 (06) : 585 - 598
  • [25] A Novel Method for Fault Diagnosis of Rotating Machinery
    Tang, Meng
    Liao, Yaxuan
    Luo, Fan
    Li, Xiangshun
    ENTROPY, 2022, 24 (05)
  • [26] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [27] Bispectrum analysis for rotating machinery fault diagnosis
    Yang, JT
    Ding, Q
    INTEGRATING DYNAMICS, CONDITION MONITORING AND CONTROL FOR THE 21ST CENTURY - DYMAC 99, 1999, : 383 - 388
  • [28] Rotating machinery fault diagnosis based on multiple fault manifolds
    Su, Zu-Qiang
    Tang, Bao-Ping
    Zhao, Ming-Hang
    Qin, Yi
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2015, 28 (02): : 309 - 315
  • [29] RESEARCH ON FAULT DIAGNOSIS SYSTEM OF ROTATING MACHINERY BASED ON MACHINERY CONFIGURATION
    Chen Ping
    Xie Zhijiang
    JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2008, 7 (01) : 41 - 44
  • [30] DIGITAL TWIN FOR SMART MANUFACTURING: THE SIMULATION ASPECT
    Shao, Guodong
    Jain, Sanjay
    Laroque, Christoph
    Lee, Loo Hay
    Lendermann, Peter
    Rose, Oliver
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 2085 - 2098