Digital Twin for rotating machinery fault diagnosis in smart manufacturing

被引:346
|
作者
Wang, Jinjiang [1 ]
Ye, Lunkuan [1 ]
Gao, Robert X. [2 ]
Li, Chen [1 ]
Zhang, Laibin [1 ]
机构
[1] China Univ Petr, Sch Mech & Transportat Engn, Beijing 102249, Peoples R China
[2] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Cleveland, OH 44106 USA
基金
中国国家自然科学基金;
关键词
Digital Twin; digital manufacturing; cyber-physical system; fault diagnosis; CYBER-PHYSICAL SYSTEMS; BIG DATA; PROGNOSIS; FUTURE; TOOLS; MODEL;
D O I
10.1080/00207543.2018.1552032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With significant advancement in information technologies, Digital Twin has gained increasing attention as it offers an enabling tool to realise digitally-driven, cloud-enabled manufacturing. Given the nonlinear dynamics and uncertainty involved during the process of machinery degradation, proper design and adaptability of a Digital Twin model remain a challenge. This paper presents a Digital Twin reference model for rotating machinery fault diagnosis. The requirements for constructing the Digital Twin model are discussed, and a model updating scheme based on parameter sensitivity analysis is proposed to enhance the model adaptability. Experimental data are collected from a rotor system that emulates an unbalance fault and its progression. The data are then input to a Digital Twin model of the rotor system to investigate its ability of unbalance quantification and localisation for fault diagnosis. The results show that the constructed Digital Twin rotor model enables accurate diagnosis and adaptive degradation analysis.
引用
收藏
页码:3920 / 3934
页数:15
相关论文
共 50 条
  • [1] Digital Twin-Assisted Fault Diagnosis of Rotating Machinery Without Measured Fault Data
    Xia, Jingyan
    Huang, Ruyi
    Li, Jipu
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [2] A digital twin-driven approach for partial domain fault diagnosis of rotating machinery
    Xia, Jingyan
    Chen, Zhuyun
    Chen, Jiaxian
    He, Guolin
    Huang, Ruyi
    Li, Weihua
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [3] A digital twin-driven approach for partial domain fault diagnosis of rotating machinery
    Xia, Jingyan
    Chen, Zhuyun
    Chen, Jiaxian
    He, Guolin
    Huang, Ruyi
    Li, Weihua
    Engineering Applications of Artificial Intelligence, 2024, 131
  • [4] Twin Broad Learning System for Fault Diagnosis of Rotating Machinery
    Yang, Le
    Yang, Zelin
    Song, Shiji
    Li, Fan
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Recent progress in digital twin-driven fault diagnosis of rotating machinery: A comprehensive review
    Zhang, Pengbo
    Chen, Renxiang
    Yang, Lixia
    Zou, Ye
    Gao, Liang
    NEUROCOMPUTING, 2025, 634
  • [6] A novel digital twin method based on diffusion models for imbalanced fault diagnosis of rotating machinery
    Jiang, Zeyu
    Ren, Zhaohui
    Zhang, Yongchao
    Zhou, Shihua
    Yu, Tianzhuang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024,
  • [7] Fault diagnosis in rotating machinery
    Lees, A.W.
    Proceedings of the International Modal Analysis Conference - IMAC, 2000, 1 : 313 - 319
  • [8] Fault diagnosis of rotating machinery
    Edwards, S.
    Lees, A.W.
    Friswell, M.I.
    Shock and Vibration Digest, 1998, 30 (01): : 4 - 13
  • [9] Fault diagnosis in rotating machinery
    Lees, AW
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 313 - 319
  • [10] Digital twin in smart manufacturing
    Li, Lianhui
    Lei, Bingbing
    Mao, Chunlei
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2022, 26