Ultrasound waveform tomography with a spatially-variant regularization scheme

被引:3
|
作者
Lin, Youzuo [1 ]
Huang, Lianjie [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Breast tumor; sound speed; spatially-variant regularization; ultrasound reflection; ultrasound transmission; ultrasound waveform tomography;
D O I
10.1117/12.2043110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Regularization is often needed in breast ultrasound waveform tomography to improve tomographic reconstructions. A global regularization parameter may lead to either over-regularization or under-regularization in different regions in the imaging domain. We develop a new ultrasound waveform tomography method with spatially-variant regularization. Our new method employs different regularization parameters in different regions of the breast so that each regularization parameter is optimal for the local region. Our numerical examples demonstrate the improvement of ultrasound waveform tomography using the spatially-variant modified total-variation regularization for sound-speed reconstructions of large and small breast tumors, particularly when their sizes are significantly different from one another.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Spatially variant regularization based on model resolution and fidelity embedding characteristics improves photoacoustic tomography
    Sanny, Dween Rabius
    Prakash, Jaya
    Kalva, Sandeep Kumar
    Pramanik, Manojit
    Yalavarthy, Phaneendra K.
    JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (10)
  • [42] Learning Spatially-Variant MAP Models for Non-blind Image Deblurring
    Dong, Jiangxin
    Roth, Stefan
    Schiele, Bernt
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4884 - 4893
  • [43] Spatially-Variant Morphological Operations on Binary Images based on the Polar Distance Transform
    Norell, Kristin
    Lindblad, Joakim
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1730 - 1733
  • [44] Introducing context-dependent and spatially-variant viewing biases in saccadic models
    Le Meur, Olivier
    Coutrot, Antoine
    VISION RESEARCH, 2016, 121 : 72 - 84
  • [45] Spatially-Variant Degradation Model for Dataset-Free Super-Resolution
    Guo, Shaojie
    Song, Haofei
    Li, Qingli
    Wang, Yan
    COMPUTER VISION - ECCV 2024, PT XXV, 2025, 15083 : 340 - 357
  • [46] Digital image processing for wide-angle highly spatially-variant imagers
    Olivas, Stephen J.
    Sorel, Michal
    Arianpour, Ashkan
    Stamenov, Igor
    Nikzad, Nima
    Schuster, Glehn M.
    Motamedi, Nojan
    Mellette, William M.
    Stack, Ron A.
    Johnson, Adan
    Morrison, Rick
    Agurok, Ilyan P.
    Ford, Joseph E.
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XVII, 2014, 9193
  • [47] Benefits of Using a Spatially-Variant Penalty Strength With Anatomical Priors in PET Reconstruction
    Tsai, Yu-Jung
    Schramm, Georg
    Ahn, Sangtae
    Bousse, Alexandre
    Arridge, Simon
    Nuyts, Johan
    Hutton, Brian F.
    Stearns, Charles W.
    Thielemans, Kris
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (01) : 11 - 22
  • [48] Generation of arbitrary spatially-variant polarized fields using computer generated holograms
    Carnicer, Artur
    Juvells, Ignasi
    Maluenda, David
    Martinez-Herrero, Rosario
    Mejias, Pedro M.
    Schaschek, Fabian
    OPTICAL MODELLING AND DESIGN II, 2012, 8429
  • [49] Tight control of light beams in photonic crystals with spatially-variant lattice orientation
    Digaum, Jennefir L.
    Pazos, Javier J.
    Chiles, Jeffrey
    Archangel, Jeffrey D'
    Padilla, Gabriel
    Tatulian, Adrian
    Rumpf, Raymond C.
    Fathpour, Sasan
    Boreman, Glenn D.
    Kuebler, Stephen M.
    OPTICS EXPRESS, 2014, 22 (21): : 25788 - 25804
  • [50] Full Field Spatially-Variant Image-Based Resolution Modelling Reconstruction for the HRRT
    Angelis, Georgios I.
    Kotasidis, Fotis A.
    Matthews, Julian C.
    Markiewicz, Pawel J.
    Lionheart, William R.
    Reader, Andrew J.
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 3434 - 3438