A deep learning framework to classify breast density with noisy labels regularization

被引:6
|
作者
Lopez-Almazan, Hector [1 ]
Perez-Benito, Francisco Javier [1 ]
Larroza, Andres [1 ]
Perez-Cortes, Juan-Carlos [1 ]
Pollan, Marina [2 ,3 ]
Perez-Gomez, Beatriz [2 ,3 ]
Trejo, Dolores Salas [4 ,5 ]
Casals, Maria [4 ,5 ]
Llobet, Rafael [1 ]
机构
[1] Univ Politecn Valencia, Inst Tecnol Informat, Camino Vera S-N, Valencia 46022, Spain
[2] Carlos III Inst Hlth, Natl Ctr Epidemiol, Monforte De Lemos 5, Madrid 28029, Spain
[3] Carlos Inst Hlth 3, Consortium Biomed Res Epidemiol & Publ Hlth CIBER, Monforte Lemos 5, Madrid 28029, Spain
[4] Gen Directorate Publ Hlth, Valencian Breast Canc Screening Program, Valencia, Spain
[5] FISABIO, Ctr Super Invest Salud Publ CSISP, Valencia, Spain
关键词
Breast density; Noisy labels; Deep learning; Dense tissue classification; Mammography; CLASSIFICATION; VARIABILITY; CANCER; MAMMOGRAPHY;
D O I
10.1016/j.cmpb.2022.106885
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Breast density assessed from digital mammograms is a biomarker for higher risk of developing breast cancer. Experienced radiologists assess breast density using the Breast Image and Data System (BI-RADS) categories. Supervised learning algorithms have been developed with this objective in mind, however, the performance of these algorithms depends on the quality of the ground truth information which is usually labeled by expert readers. These labels are noisy approximations of the ground truth, as there is often intra-and inter-reader variability among labels. Thus, it is crucial to provide a reliable method to obtain digital mammograms matching BI-RADS categories. This paper presents RegL (Labels Regularizer), a methodology that includes different image pre-processes to allow both a correct breast segmentation and the enhancement of image quality through an intensity adjustment, thus allowing the use of deep learning to classify the mammograms into BI-RADS categories. The Confusion Matrix (CM) CNN network used implements an architecture that models each radiologist's noisy label. The final methodology pipeline was determined after comparing the performance of image pre-processes combined with different DL architectures.Methods: A multi-center study composed of 1395 women whose mammograms were classified into the four BI-RADS categories by three experienced radiologists is presented. A total of 892 mammograms were used as the training corpus, 224 formed the validation corpus, and 279 the test corpus.Results: The combination of five networks implementing the RegL methodology achieved the best results among all the models in the test set. The ensemble model obtained an accuracy of (0.85) and a kappa index of 0.71. Conclusions: The proposed methodology has a similar performance to the experienced radiologists in the classification of digital mammograms into BI-RADS categories. This suggests that the pre-processing steps and modelling of each radiologist's label allows for a better estimation of the unknown ground truth labels.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Towards Federated Learning against Noisy Labels via Local Self-Regularization
    Jiang, Xuefeng
    Sun, Sheng
    Wang, Yuwei
    Liu, Min
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 862 - 873
  • [32] Learning and Mining with Noisy Labels
    Sugiyama, Masashi
    Liu, Tongliang
    Han, Bo
    Liu, Yang
    Niu, Gang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5152 - 5155
  • [33] MixNN: Combating Noisy Labels in Deep Learning by Mixing with Nearest Neighbors
    Lu, Yangdi
    He, Wenbo
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 847 - 856
  • [34] Deep Cross-Modal Hashing With Ranking Learning for Noisy Labels
    Shu, Zhenqiu
    Bai, Yibing
    Yong, Kailing
    Yu, Zhengtao
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 553 - 565
  • [35] Class-conditional Importance Weighting for Deep Learning with Noisy Labels
    Nagarajan, Bhalaji
    Marques, Ricardo
    Mejia, Marcos
    Radeva, Petia
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2022, : 679 - 686
  • [36] An Approach for Deep Learning in ECG Classification Tasks in the Presence of Noisy Labels
    Liu, Xinwen
    Wang, Huan
    Li, Zongjin
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 369 - 372
  • [37] Deep learning with noisy labels in medical prediction problems: a scoping review
    Wei, Yishu
    Deng, Yu
    Sun, Cong
    Lin, Mingquan
    Jiang, Hongmei
    Peng, Yifan
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (07) : 1596 - 1607
  • [38] Deep Learning from Noisy Labels with Some Adjustments of a Recent Method
    Fazekas, Istvan
    Forian, Laszlo
    Barta, Attila
    INFOCOMMUNICATIONS JOURNAL, 2023, 15 : 9 - 12
  • [39] Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization
    Zhang, Yivan
    Niu, Gang
    Sugiyama, Masashi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [40] On Learning Contrastive Representations for Learning with Noisy Labels
    Yi, Li
    Liu, Sheng
    She, Qi
    McLeod, A. Ian
    Wang, Boyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16661 - 16670