Optical dromions for perturbed nonlinear Schrodinger equation with cubic quintic septic media

被引:19
|
作者
Rizvi, Syed Tahir Raza [1 ]
Ahmad, Sarfraz [1 ]
Nadeem, M. Faisal [1 ]
Awais, Muhammad [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
来源
OPTIK | 2021年 / 226卷
关键词
Nonlinear Schrodinger equation; Optical solitons; Non-Kerr law; Integrability; SOLITARY WAVE SOLUTIONS; KUNDU-ECKHAUS EQUATION; STABILITY ANALYSIS; CONSERVATION-LAWS; SOLITONS; KERR; DISPERSION;
D O I
10.1016/j.ijleo.2020.165955
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we obtain optical solitons and other solitary wave solutions for (2+1)-dimensional nonlinear Schrodinger equation (NLSE) with the aid of extended modified auxiliary equation mapping method, together with cubic-quintic-septic nonlinearity. We obtain bright, dark, singular, rational, periodic and many other solitary wave solutions for our governing model with constraint conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear Schrodinger equation
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 112 : 164 - 179
  • [42] Solitons for the cubic-quintic nonlinear Schrodinger equation with Raman effect in nonlinear optics
    Wang, Ping
    Shang, Tao
    Feng, Li
    Du, Yingjie
    OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) : 1117 - 1126
  • [43] New solition wave structure and modulation instability analysis for nonlinear Schrodinger equation with cubic, quintic, septic, and nonic nonlinearities
    Khalifa, Abeer S.
    Ahmed, Hamdy M.
    Badra, Niveen M.
    Rabie, Wafaa B.
    Al-Askar, Farah M.
    Mohammed, Wael W.
    AIMS MATHEMATICS, 2024, 9 (09): : 26166 - 26181
  • [44] Optical dromions for perturbed fractional nonlinear Schrödinger equation with conformable derivatives
    S. T. R. Rizvi
    Aly R. Seadawy
    M. Younis
    N. Ahmad
    S. Zaman
    Optical and Quantum Electronics, 2021, 53
  • [45] Homoclinic orbits for a perturbed quintic-cubic nonlinear Schrdinger equation
    Boling GUO and Hanlin CHEN Institute of Applied Physics and Computational Mathematics
    Mianyang Normal College
    CommunicationsinNonlinearScience&NumericalSimulation, 2001, (04) : 227 - 230
  • [46] Homoclinic orbits for a perturbed quintic-cubic nonlinear Schrödinger equation
    Guo, Doling
    Chen, Hanlin
    Communications in Nonlinear Science and Numerical Simulation, 2001, 6 (04) : 227 - 230
  • [47] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [48] Solitary waves for cubic-quintic Nonlinear Schrodinger equation with variable coefficients
    Zhang, JL
    Wang, ML
    Li, XZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (02) : 343 - 346
  • [49] SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Triki, Houria
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 360 - 366