A note lower bounds for the Estrada index

被引:2
|
作者
Rodriguez, Jonnathan [1 ]
Aguayo, Juan L. [2 ]
Carmona, Juan R. [2 ]
Jahanbani, Akbar [3 ]
机构
[1] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Av Angamos 0601, Antofagasta, Chile
[2] Univ Austral Chile, Inst Ciencias Fis & Matemat, Independencia 631, Valdivia, Chile
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Estrada index; Adjacency matrix; Lower bound; Randic index; Graph;
D O I
10.1016/j.disc.2021.112303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on n vertices and lambda(1), lambda(2), . . . , lambda(n) its eigenvalues. The Estrada index of G is an invariant that is calculated from the eigenvalues of the adjacency matrix of a graph. In this paper, we present some new lower bounds for the Estrada index of graphs and in particular of bipartite graphs that only depend on the number of vertices, the number of edges, Randic index, maximum and minimum degree and diameter. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条