THE SPECTRAL GAP OF GRAPHS AND STEKLOV EIGENVALUES ON SURFACES

被引:9
|
作者
Colbois, Bruno [1 ]
Girouard, Alexandre [2 ]
机构
[1] Univ Neuchatel, Inst Math, CH-2009 Neuchatel, Switzerland
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
关键词
Steklov problem; Riemannian surface; eigenvalue inequalities; expander graphs; COVERINGS; TOWER;
D O I
10.3934/era.2014.21.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using expander graphs, we construct a sequence {Omega(N)}N is an element of N of smooth compact surfaces with boundary of perimeter N, and with the first non-zero Steklov eigenvalue sigma(1)(Omega(N)) uniformly bounded away from zero. This answers a question which was raised in PO]. The sequence sigma(1)(Omega(N))L(partial derivative Omega n) grows linearly with the genus of Omega(N), which is the optimal growth rate.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 50 条
  • [11] Estimates for low Steklov eigenvalues of surfaces with several boundary components
    Perrin, Helene
    ANNALES MATHEMATIQUES DU QUEBEC, 2024, 49 (1): : 165 - 184
  • [12] A Lichnerowicz-type estimate for Steklov eigenvalues on graphs and its rigidity
    Shi, Yongjie
    Yu, Chengjie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [13] A Lichnerowicz-type estimate for Steklov eigenvalues on graphs and its rigidity
    Yongjie Shi
    Chengjie Yu
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [14] Upper bounds for Steklov eigenvalues of subgraphs of polynomial growth Cayley graphs
    Léonard Tschanz
    Annals of Global Analysis and Geometry, 2022, 61 : 37 - 55
  • [15] Upper bounds for Steklov eigenvalues of subgraphs of polynomial growth Cayley graphs
    Tschanz, Leonard
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (01) : 37 - 55
  • [16] Exterior Steklov eigenvalues and modified exterior Steklov eigenvalues in inverse scattering
    Li, Yuan
    INVERSE PROBLEMS, 2020, 36 (10)
  • [17] Determination of the modified exterior Steklov eigenvalues via the reciprocity gap method
    Qiu, Wensong
    Wang, Hongyan
    Li, Yuan
    Feng, Lixin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 459
  • [18] Steklov eigenvalues for the ∞-Laplacian
    Garcia-Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2006, 17 (03) : 199 - 210
  • [19] The First Two Largest Eigenvalues of Laplacian, Spectral Gap Problem and Cheeger Constant of Graphs
    Samuel, Opiyo
    Soeharyadi, Yudi
    Setyabudhi, Marcus Wono
    INTERNATIONAL CONFERENCE AND WORKSHOP ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS (ICWOMAA 2017), 2017, 1913
  • [20] Inequalities for the Steklov eigenvalues
    Xia, Changyu
    Wang, Qiaoling
    CHAOS SOLITONS & FRACTALS, 2013, 48 : 61 - 67