A comparison of local feature detectors and descriptors for visual object categorization by intra-class repeatability and matching

被引:0
|
作者
Lankinen, Jukka [1 ]
Kangas, Ville [1 ]
Kamarainen, Joni-Kristian [1 ]
机构
[1] Lappeenranta Univ Technol, Kouvola Unit, Machine Vis & Pattern Recognit Lab, Lappeenranta, Finland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intuitive and easily interpretable performance measures, repeatability and matching performance, for local feature detectors and descriptors were introduced by Mikolajczyk et al. [10, 9]. They, however, measured performance in a wide baseline setting that does not correspond to the visual object categorisation problem which is a popular application of the detectors and descriptors. The limitation has been recognised and ad hoc evaluations proposed. To the authors' best knowledge, our work is the first which extends the original repeatability and matching performance measures to the case of object classes. Using the novel evaluation framework we test state-of-the-art detectors and descriptors with the popular Caltech-101 dataset and report the object category level (intra-class) repeatability and matching performances.
引用
收藏
页码:780 / 783
页数:4
相关论文
共 9 条
  • [1] A comparison of feature detectors and descriptors for object class matching
    Hietanen, Antti
    Lankinen, Jukka
    Kamarainen, Joni-Kristian
    Buch, Anders Glent
    Kruger, Norbert
    NEUROCOMPUTING, 2016, 184 : 3 - 12
  • [2] Evaluation of Local Detectors and Descriptors for Fast Feature Matching
    Miksik, Ondrej
    Mikolajczyk, Krystian
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2681 - 2684
  • [3] Comparison of Local Visual Feature Detectors and Descriptors for the Registration of 3D Building Scenes
    Zhu, Zhenhua
    Davari, Khashayar
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2015, 29 (05)
  • [4] COMPARISON OF LOCAL FEATURE DESCRIPTORS FOR MOBILE VISUAL SEARCH
    Chandrasekhar, Vijay
    Chen, David M.
    Lin, Andy
    Takacs, Gabriel
    Tsai, Sam S.
    Cheung, Ngai-Man
    Reznik, Yuriy
    Grzeszczuk, Radek
    Girod, Bernd
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3885 - 3888
  • [5] Local detectors and compact descriptors for visual search: A quantitative comparison
    Bianco, S.
    Mazzini, D.
    Pau, D. P.
    Schettini, R.
    DIGITAL SIGNAL PROCESSING, 2015, 44 : 1 - 13
  • [6] Visual categorization robust to large intra-class variations using entropy-guided codebook
    Kim, Sungho
    Kweon, In So
    Lee, Chil-Woo
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 3793 - +
  • [7] Weakly Supervised Object Localization Through Inter-class Feature Similarity and Intra-class Appearance Consistency
    Wei, Jun
    Wang, Sheng
    Zhou, S. Kevin
    Cui, Shuguang
    Li, Zhen
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 195 - 210
  • [8] Performance Comparison of Point Feature Detectors and Descriptors for Visual Navigation on Android Platform
    Nowicki, Michal
    Skrzypczynski, Piotr
    2014 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2014, : 116 - 121
  • [9] Evaluation of Local Feature Detectors for the Comparison of Thermal and Visual Low Altitude Aerial Images
    Lakshmi, K. Divya
    Muthaiah, R.
    Kannan, K.
    Tapas, Anand M.
    DEFENCE SCIENCE JOURNAL, 2018, 68 (05) : 473 - 479