Evaluation of Local Detectors and Descriptors for Fast Feature Matching

被引:0
|
作者
Miksik, Ondrej [1 ]
Mikolajczyk, Krystian [2 ]
机构
[1] CMP, Prague, Czech Republic
[2] CVSSP, Guildford, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Local feature detectors and descriptors are widely used in many computer vision applications and various methods have been proposed during the past decade. There have been a number of evaluations focused on various aspects of local features, matching accuracy in particular, however there has been no comparisons considering the accuracy and speed trade-offs of recent extractors such as BRIEF, BRISK, ORB, MRRID, MROGH and LIOP. This paper provides a performance evaluation of recent feature detectors and compares their matching precision and speed in randomized kd-trees setup as well as an evaluation of binary descriptors with efficient computation of Hamming distance.
引用
收藏
页码:2681 / 2684
页数:4
相关论文
共 50 条
  • [1] An Evaluation of Local Feature Detectors and Descriptors for Infrared Images
    Johansson, Johan
    Solli, Martin
    Maki, Atsuto
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 711 - 723
  • [2] Evaluation of Feature Detectors and Descriptors on the Iris
    De Zanet, Sandro
    Rueegsegger, Michael
    Rudolph, Tobias
    Wolf, Sebastian
    Kowal, Jens
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [3] A comparison of feature detectors and descriptors for object class matching
    Hietanen, Antti
    Lankinen, Jukka
    Kamarainen, Joni-Kristian
    Buch, Anders Glent
    Kruger, Norbert
    NEUROCOMPUTING, 2016, 184 : 3 - 12
  • [4] Evaluation of Keypoint Detectors and Descriptors in Arthroscopic Images for Feature-Based Matching Applications
    Marmol, Andres
    Peynot, Thierry
    Eriksson, Anders
    Jaiprakash, Anjali
    Roberts, Jonathan
    Crawford, Ross
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04): : 2135 - 2142
  • [5] A comprehensive evaluation of local detectors and descriptors
    Wu, Song
    Oerlemans, Ard
    Bakker, Erwin M.
    Lew, Michael S.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 59 : 150 - 167
  • [6] Fast Image Segmentation for Local Feature Descriptors
    Celik, Ceyhun
    Bilge, Hasan Sakir
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [7] A comparison of local feature detectors and descriptors for visual object categorization by intra-class repeatability and matching
    Lankinen, Jukka
    Kangas, Ville
    Kamarainen, Joni-Kristian
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 780 - 783
  • [8] Performance Evaluation of Feature Detectors and Descriptors Beyond the Visible
    Mouats, Tarek
    Aouf, Nabil
    Nam, David
    Vidas, Stephen
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2018, 92 (01) : 33 - 63
  • [9] Performance Evaluation of Feature Detectors and Descriptors Beyond the Visible
    Tarek Mouats
    Nabil Aouf
    David Nam
    Stephen Vidas
    Journal of Intelligent & Robotic Systems, 2018, 92 : 33 - 63
  • [10] An Evaluation of Image Feature Detectors and Descriptors for Robot Navigation
    Schmidt, Adam
    Kraft, Marek
    Kasinski, Andrzej
    COMPUTER VISION AND GRAPHICS, PT II, 2010, 6375 : 251 - 259