Completable two step nilpotent Lie algebras of type (2, p

被引:1
|
作者
Yan, Zaili
Deng, Shaoqiang [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2014年 / 62卷 / 04期
关键词
completable Lie algebras; maximal torus; minimal indices; elementary divisors; 17B30; 17B40; 17B05;
D O I
10.1080/03081087.2013.780605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Lie algebra is called complete if its centre is zero and all its derivations are inner. A nilpotent Lie algebra is called completable if it is the maximal nilpotent ideal of a complete solvable Lie algebra. A two-step nilpotent Lie algebra is said to be of type , if dim and dim . In this paper, based on the classification result of M. Gauger, we classify two step completable complex nilpotent Lie algebras of type.
引用
收藏
页码:445 / 452
页数:8
相关论文
共 50 条
  • [21] Some 2-step nilpotent Lie algebras I
    Ren, B
    Meng, DJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 338 (1-3) : 77 - 98
  • [22] Minimal algebras and 2-step nilpotent Lie algebras in dimension 7
    Bazzoni, Giovanni
    GEOMETRIAE DEDICATA, 2013, 165 (01) : 111 - 133
  • [23] Minimal algebras and 2-step nilpotent Lie algebras in dimension 7
    Giovanni Bazzoni
    Geometriae Dedicata, 2013, 165 : 111 - 133
  • [24] k-step nilpotent Lie algebras
    Goze, Michel
    Remm, Elisabeth
    GEORGIAN MATHEMATICAL JOURNAL, 2015, 22 (02) : 219 - 234
  • [25] On extensions of free nilpotent Lie algebras of type 2
    Benito, Pilar
    de-la-Concepcion, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 : 363 - 382
  • [26] On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras
    Abiev N.A.
    Siberian Advances in Mathematics, 2014, 24 (1) : 1 - 11
  • [27] Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras
    Nagy, Peter T.
    Homolya, Szilvia
    ADVANCES IN GEOMETRY, 2015, 15 (01) : 121 - 126
  • [28] The C*-algebras of connected real two-step nilpotent Lie groups
    Guenther, Janne-Kathrin
    Ludwig, Jean
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (01): : 13 - 57
  • [29] Lie bialgebra structures on 2-step nilpotent graph algebras
    Farinati, Marco A.
    Patricia Jancsa, Alejandra
    JOURNAL OF ALGEBRA, 2018, 505 : 70 - 91
  • [30] Pseudo-metric 2-step nilpotent Lie algebras
    Autenried, Christian
    Furutani, Kenro
    Markina, Irina
    Vasil'ev, Alexander
    ADVANCES IN GEOMETRY, 2018, 18 (02) : 237 - 263