Robust Design of a Closed-Loop Supply Chain Considering Multiple Recovery Options and Carbon Policies Under Uncertainty

被引:9
|
作者
Mohammed, Fareeduddin [1 ]
Hassan, Adnan [1 ]
Selim, Shokri Z. [2 ]
机构
[1] Univ Teknol Malaysia, Dept Mat Mfg & Ind Engn, Sch Mech Engn, Fac Engn, Johor Baharu 81310, Malaysia
[2] King Fahd Univ Petr & Minerals, Dept Syst Engn, Coll Comp Sci & Engn, Dhahran 31261, Saudi Arabia
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Sustainable manufacturing; closed-loop supply chain; mixed-integer linear programming; carbon policies; multi recovery options; robust optimization; uncertainty; reverse logistics;
D O I
10.1109/ACCESS.2020.3046684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Increasing global warming, climate change and stringent governmental legislations are driving industry practitioners and decision makers to implement various strategies to reduce carbon emissions. One of the effective approaches to mitigate carbon emissions is the implementation of closed-loop supply chain (CLSC). The key motivation for considering multiple recovery options in the CLSC is to capture the remaining economic value and to reduce carbon emissions in the collection and recovery operations. Customer's willingness to return used product depends on the acquisition price and nearness to the collection center. This research proposes a deterministic mixed-integer linear programming (MILP) model for a multi-period and multi-product CLSC network under carbon pricing and carbon trading policies consideration. The model includes different acquisition price for returned products and multiple recovery options. Further, the study takes into consideration uncertainty in procurement cost, demand, and quantity of returned products. A robust optimization approach is adopted to address uncertainty in network parameters. Numerical results show that the proposed model captures trade-offs between total cost and carbon emission. Overall, the study reveals that the carbon trading policy incurs relatively lower total cost compared to the carbon pricing policy. Repair and recycling activities in the reverse supply chain contribute significantly to the total cost and carbon emission. This study provide evidence that it is possible to achieve an optimal CLSC network with reduced carbon emission at a moderate total supply chain cost. The proposed model could be used to guide firms to choose an appropriate budget of uncertainty toward achieving a robust supply chain network.
引用
收藏
页码:1167 / 1189
页数:23
相关论文
共 50 条
  • [21] Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty
    Dehghan, Ehsan
    Amiri, Maghsoud
    Nikabadi, Mohsen Shafiei
    Jabbarzadeh, Armin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (05) : 6457 - 6470
  • [22] Optimal Planning of a Closed-loop Supply Chain with Recovery Options and Carbon Emission Considerations
    Mohammed, F.
    Hassan, Adnan
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2020, : 54 - 58
  • [23] Remanufacturing and low-carbon investment strategies in a closed-loop supply chain under multiple carbon policies
    Li, Jian
    Lai, Kin Keung
    Li, Yongming
    INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS, 2024, 27 (01) : 170 - 192
  • [24] Closed-loop supply chain network design under carbon subsidies
    Gao, Juhong
    Wang, Rui
    Wang, Haiyan
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2015, 21 (11): : 3033 - 3040
  • [25] Green and sustainable closed-loop supply chain network design under uncertainty
    Zhen, Lu
    Huang, Lufei
    Wang, Wencheng
    JOURNAL OF CLEANER PRODUCTION, 2019, 227 : 1195 - 1209
  • [26] A responsive closed-loop supply chain network design under demand uncertainty
    Han, Bing
    Shi, Shanshan
    Park, Yongshin
    Xu, Yuan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 192
  • [27] Robust optimization of sustainable closed-loop supply chain considering carbon emission schemes
    Golpira, Heris
    Javanmardan, Ahvan
    SUSTAINABLE PRODUCTION AND CONSUMPTION, 2022, 30 : 640 - 656
  • [28] Study on optimization design of a closed-loop supply chain network under uncertainty
    Li Hua
    Wang Zhaobo
    PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS A AND B: BUILDING CORE COMPETENCIES THROUGH IE&EM, 2007, : 454 - 459
  • [29] Closed-Loop Supply Chain Network Design Under Demand and Return Uncertainty
    Uster, Halit
    Hwang, Sung Ook
    TRANSPORTATION SCIENCE, 2017, 51 (04) : 1063 - 1085
  • [30] A robust design for a closed-loop supply chain network under an uncertain environment
    Ramezani, Majid
    Bashiri, Mahdi
    Tavakkoli-Moghaddam, Reza
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 66 (5-8): : 825 - 843