TOSELM: Timeliness Online Sequential Extreme Learning Machine

被引:41
|
作者
Gu, Yang [1 ,2 ]
Liu, Junfa [1 ]
Chen, Yiqiang [1 ]
Jiang, Xinlong [1 ,2 ]
Yu, Hanchao [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Timeliness; Online sequential learning; Adaptive weight; Adaptive iteration;
D O I
10.1016/j.neucom.2013.02.047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For handling data and training model, existing machine learning methods do not take timeliness problem into consideration. Timeliness here means the data distribution or the data trend changes with time passing by. Based on timeliness management scheme, a novel machine learning algorithm Timeliness Online Sequential Extreme Learning Machine (TOSELM) is proposed, which improves Online Sequential Extreme Learning Machine (OSELM) with central tendency and dispersion characteristics of data to deal with timeliness problem. The performance of proposed algorithm has been validated on several simulated and realistic datasets, and experimental results show that TOSELM utilizing adaptive weight scheme and iteration scheme can achieve higher learning accuracy, faster convergence and better stability than other machine learning methods. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
  • [41] Intelligent fingerprint quality analysis using online sequential extreme learning machine
    Shan Juan Xie
    JuCheng Yang
    Hui Gong
    Sook Yoon
    Dong Sun Park
    Soft Computing, 2012, 16 : 1555 - 1568
  • [42] Improved online sequential extreme learning machine for simulation of daily reference evapotranspiration
    Zhang, Yubin
    Wei, Zhengying
    Zhang, Lei
    Lin, Qinyin
    Du, Jun
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2017, 8 (02) : 127 - 140
  • [43] Improved extreme learning machine for multivariate time series online sequential prediction
    Wang, Xinying
    Han, Min
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 40 : 28 - 36
  • [44] Variable complexity online sequential extreme learning machine, with applications to streamflow prediction
    Lima, Aranildo R.
    Hsieh, William W.
    Cannon, Alex J.
    JOURNAL OF HYDROLOGY, 2017, 555 : 983 - 994
  • [45] Feature Adaptive Online Sequential Extreme Learning Machine for lifelong indoor localization
    Jiang, Xinlong
    Liu, Junfa
    Chen, Yiqiang
    Liu, Dingjun
    Gu, Yang
    Chen, Zhenyu
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (01): : 215 - 225
  • [46] Multi-layer Online Sequential Extreme Learning Machine for Image Classification
    Mirza, Bilal
    Kok, Stanley
    Dong, Fei
    PROCEEDINGS OF ELM-2015, VOL 1: THEORY, ALGORITHMS AND APPLICATIONS (I), 2016, 6 : 39 - 49
  • [47] Online Extreme Learning Machine with Hybrid Sampling Strategy for Sequential Imbalanced Data
    Mao, Wentao
    Jiang, Mengxue
    Wang, Jinwan
    Li, Yuan
    COGNITIVE COMPUTATION, 2017, 9 (06) : 780 - 800
  • [48] Network Traffic Prediction Using Online-Sequential Extreme Learning Machine
    Rau, Francisco
    Soto, Ismael
    Adasme, Pablo
    Zabala-Blanco, David
    Azurdia-Meza, Cesar A.
    2021 THIRD SOUTH AMERICAN COLLOQUIUM ON VISIBLE LIGHT COMMUNICATIONS (SACVLC 2021), 2021, : 13 - 18
  • [49] Online Extreme Learning Machine with Hybrid Sampling Strategy for Sequential Imbalanced Data
    Wentao Mao
    Mengxue Jiang
    Jinwan Wang
    Yuan Li
    Cognitive Computation, 2017, 9 : 780 - 800
  • [50] Research on Transformer Fault Diagnosis Based on Online Sequential Extreme Learning Machine
    Li, Yuancheng
    Wang, Xiaohan
    Zhang, Yingying
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2019, 12 (05) : 408 - 413