Finite-Temperature Topological Invariant for Interacting Systems

被引:19
|
作者
Unanyan, Razmik [1 ,2 ]
Kiefer-Emmanouilidis, Maximilian [1 ,2 ,3 ]
Fleischhauer, Michael [1 ,2 ,4 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.125.215701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the ensemble geometric phase, recently introduced to classify the topology of density matrices, to finite-temperature states of interacting systems in one spatial dimension (1D). This includes cases where the gapped ground state has a fractional filling and is degenerate. At zero temperature the corresponding topological invariant agrees with the well-known invariant of Niu, Thouless, and Wu. We show that its value at finite temperatures is identical to that of the ground state below some critical temperature T-c larger than the many-body gap. We illustrate our result with numerical simulations of the 1D extended superlattice Bose-Hubbard model at quarter filling. Here, a cyclic change of parameters in the ground state leads to a topological charge pump with fractional winding. nu = 1/2. The particle transport is no longer quantized when the temperature becomes comparable to the many-body gap, yet the winding of the generalized ensemble geometric phase is.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A finite-temperature phase transition for disordered weakly interacting bosons in one dimension
    I. L. Aleiner
    B. L. Altshuler
    G. V. Shlyapnikov
    Nature Physics, 2010, 6 : 900 - 904
  • [32] Density-matrix Chern insulators: Finite-temperature generalization of topological insulators
    Rivas, A.
    Viyuela, O.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW B, 2013, 88 (15)
  • [33] Finite-temperature quantum noise correlations as a probe for topological helical edge modes
    Mishra, Sachiraj
    Benjamin, Colin
    PHYSICAL REVIEW B, 2023, 108 (11)
  • [34] LANCZOS METHOD FOR THE CALCULATION OF FINITE-TEMPERATURE QUANTITIES IN CORRELATED SYSTEMS
    JAKLIC, J
    PRELOVSEK, P
    PHYSICAL REVIEW B, 1994, 49 (07): : 5065 - 5068
  • [35] FINITE-TEMPERATURE VALENCE TRANSITION IN MIXED-VALENCE SYSTEMS
    GHOSH, NK
    SARKAR, RL
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 176 (02): : 395 - 400
  • [36] Advanced finite-temperature Lanczos method for anisotropic spin systems
    Hanebaum, Oliver
    Schnack, Juergen
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (09):
  • [37] Finite-temperature Gutzwiller projection for strongly correlated electron systems
    Wang, Wan-Sheng
    He, Xiang-Mei
    Wang, Da
    Wang, Qiang-Hua
    Wang, Z. D.
    Zhang, F. C.
    PHYSICAL REVIEW B, 2010, 82 (12)
  • [38] SIMULATED-ANNEALING METHOD FOR FERMION SYSTEMS AT FINITE-TEMPERATURE
    KATO, M
    PHYSICAL REVIEW B, 1995, 51 (22): : 16046 - 16051
  • [39] Advanced finite-temperature Lanczos method for anisotropic spin systems
    Oliver Hanebaum
    Jürgen Schnack
    The European Physical Journal B, 2014, 87
  • [40] S-matrix description of nonequilibrium finite-temperature systems
    Voronyuk, V. V.
    Mandzhavidze, I. D.
    Sisakian, A. N.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 149 (03) : 1617 - 1627