Quench dynamics of isolated many-body quantum systems

被引:62
|
作者
Torres-Herrera, E. J. [1 ]
Santos, Lea F. [1 ]
机构
[1] Yeshiva Univ, Dept Phys, New York, NY 10016 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 04期
基金
美国国家科学基金会;
关键词
CHAOS; LOCALIZATION; SPECTRUM; STABILITY; PHYSICS; MOTION; STATES; DECAY; MODEL;
D O I
10.1103/PhysRevA.89.043620
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study isolated quantum systems with two-body interactions after a quench. In these systems, the energy shell is a Gaussian of width sigma, and it gives the maximum possible spreading of the energy distribution of the initial states. When the distribution achieves this shape, the fidelity decay can be Gaussian until saturation. This establishes a lower bound for the fidelity decay in realistic systems. An ultimate bound for systems with many-body interactions is also derived based on the analysis of full random matrices. We find excellent agreement between numerical and analytical results. We also provide the conditions under which the short-time dynamics of few-body observables is controlled by sigma. The analyses are developed for systems, initial states, and observables accessible to experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] QUANTUM GASES Observation of many-body dynamics in long-range tunneling after a quantum quench
    Meinert, Florian
    Mark, Manfred J.
    Kirilov, Emil
    Lauber, Katharina
    Weinmann, Philipp
    Groebner, Michael
    Daley, Andrew J.
    Naegerl, Hanns-Christoph
    SCIENCE, 2014, 344 (6189) : 1259 - 1262
  • [32] Timescales in the quench dynamics of many-body quantum systems: Participation ratio versus out-of-time ordered correlator
    Borgonovi, Fausto
    Izrailev, Felix M.
    Santos, Lea F.
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [33] QUANTUM THEORY OF MANY-BODY SYSTEMS
    HUGENHOLTZ, NM
    REPORTS ON PROGRESS IN PHYSICS, 1965, 28 : 201 - +
  • [34] Many-body Wigner quantum systems
    Palev, TD
    Stoilova, NI
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) : 2506 - 2523
  • [35] QUANTUM SCALING IN MANY-BODY SYSTEMS
    CONTINENTINO, MA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 239 (03): : 179 - 213
  • [36] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252
  • [37] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [38] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [39] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [40] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)