GLOBAL EXISTENCE AND UNIQUENESS FOR A SYSTEM OF SEMILINEAR MULTISPECIES DIFFUSION-REACTION EQUATIONS

被引:0
|
作者
Mahato, Hari Shankar [1 ]
Boehm, Michael [1 ]
机构
[1] Univ Bremen, Ctr Ind Math, D-28359 Bremen, Germany
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2013年 / 3卷 / 04期
关键词
Global solution; nonlinear parabolic equation; reversible reactions; Lyapunov functionals; maximal regularity; MAXIMAL REGULARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a system of highly nonlinear multispecies diffusion-reaction equations with homogeneous Neumann boundary condition. All reactions are reversible (see (1.1)). For this system, the existence and uniqueness of the weak solution are proved on the interval [0, T) for any T > 0. We obtain, global in time, L 8-estimates of the solution with the help of a Lyapunov functional. For the existence of the solution, we use Schaefer's fixed point theorem, maximal regularity and Lyapunov type arguments.
引用
收藏
页码:357 / 376
页数:20
相关论文
共 50 条