Field theory model for two-dimensional turbulence: Vorticity-based approach

被引:0
|
作者
Altaisky, MV [1 ]
Bowman, JC
机构
[1] Joint Inst Nucl Res, Dubna 141980, Russia
[2] Space Res Inst, Moscow 117997, Russia
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Renormalization group analysis is applied to the two-dimensional Navier-Stokes vorticity equation driven by a Gaussian random stirring. The energy-range spectrum C-Kepsilon (2/3)k(5/3) obtained in the one-loop approximation coincides with earlier double epsilon expansion results, with C-K = 3.634. This result is in good agreement with the value C-K = 3.35 obtained by direct numerical simulation of the two-dimensional turbulent energy cascade using the pseudospectral method.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 50 条
  • [21] A COMPARISON OF VORTICITY DYNAMICS WITH PASSIVE SCALAR DYNAMICS IN TWO-DIMENSIONAL TURBULENCE
    BABIANO, A
    BASDEVANT, C
    LEGRAS, B
    SADOURNY, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1984, 299 (10): : 601 - 604
  • [22] THE TWO-DIMENSIONAL BURGERS TURBULENCE MODEL
    DLOTKO, T
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1981, 21 (04): : 809 - 823
  • [23] A vorticity-based model relating herringbone riblet geometric parameters to induced vorticity
    Li, Zhiping
    He, Long
    Shi, Kaikai
    Zhou, Jinsai
    Li, Shaobin
    Shi, Dalin
    Yuan, Wei
    PHYSICS OF FLUIDS, 2025, 37 (04)
  • [24] Subgrid models for two-dimensional turbulence based on Lagrangian spectral theory
    Gotoh, T
    Kakui, I
    Kaneda, Y
    STATISTICAL THEORIES AND COMPUTATIONAL APPROACHES TO TURBULENCE: MODERN PERSPECTIVES AND APPLICATIONS TO GLOBAL-SCALE FLOWS, 2003, : 189 - 202
  • [25] Vorticity gradient stretching in the direct enstrophy transfer process of two-dimensional turbulence
    Zhou, Zeyou
    Fang, Lei
    Ouellette, Nicholas T.
    Xu, Haitao
    PHYSICAL REVIEW FLUIDS, 2020, 5 (05)
  • [26] Vorticity field in a cascade model of turbulence
    Nakano, Tohru
    Fluid Dynamics Research, 1988, 3 (1-4) : 327 - 330
  • [27] A dynamical model for turbulence .6. Two-dimensional turbulence
    Canuto, VM
    Dubovikov, MS
    Wielaard, DJ
    PHYSICS OF FLUIDS, 1997, 9 (07) : 2141 - 2147
  • [28] A VORTICITY-BASED MODEL FOR GAS TRANSFER UNDER BREAKING WAVES
    DANIIL, EI
    MOUTZOURIS, CI
    ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1995, 13 (10): : 1039 - 1046
  • [29] LYAPUNOV SPECTRUM OF A MODEL OF TWO-DIMENSIONAL TURBULENCE
    YAMADA, M
    OHKITANI, K
    PHYSICAL REVIEW LETTERS, 1988, 60 (11) : 983 - 986
  • [30] A two-dimensional toy model for geophysical turbulence
    Lindborg, Erik
    Mohanan, Ashwin Vishnu
    PHYSICS OF FLUIDS, 2017, 29 (11)