Global distribution of near-surface hydrogen on Mars

被引:195
|
作者
Feldman, WC
Prettyman, TH
Maurice, S
Plaut, JJ
Bish, DL
Vaniman, DT
Mellon, MT
Metzger, AE
Squyres, SW
Karunatillake, S
Boynton, WV
Elphic, RC
Funsten, HO
Lawrence, DJ
Tokar, RL
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Observ Midi Pyrenees, F-31400 Toulouse, France
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
[5] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
[6] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA
关键词
composition; glaciation; Mars;
D O I
10.1029/2003JE002160
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Neutron data observed using the Neutron Spectrometer aboard 2001 Mars Odyssey provide a lower limit to the global inventory of Martian water-equivalent hydrogen. Hydrogen-rich deposits ranging between about 20% and 100% water-equivalent by mass are found poleward of +/-50degrees latitude, and less rich, but significant, deposits are found at near-equatorial latitudes. The equatorial deposits between +/-45degrees latitude range between 2% and 10% water-equivalent hydrogen by mass and reach their maximum in two regions that straddle the 0-km elevation contour. Higher water abundances, up to similar to11%, are required in subsurface regolith of some equatorial regions if the upper 10 g/cm(2) of regolith is desiccated, as suggested on average by comparison of epithermal and fast neutron data. The hydrogen contents of surface soils in the latitude range between 50degrees and 80degrees north and south are equal within data uncertainties. A lower-limit estimate of the global inventory of near surface hydrogen amounts to a global water layer about 14 cm thick if the reservoir sampled from orbit is assumed to be 1 m thick.
引用
收藏
页码:E090061 / 13
页数:13
相关论文
共 50 条
  • [31] Near-surface alloys for hydrogen fuel cell applications
    Greeley, J
    Mavrikakis, M
    CATALYSIS TODAY, 2006, 111 (1-2) : 52 - 58
  • [32] Hydrogen microdoping of the near-surface layers of gallium arsenide
    V. V. Anisimov
    V. P. Demkin
    I. A. Kvint
    S. V. Mel’nichuk
    B. S. Semukhin
    Technical Physics Letters, 2000, 26 : 284 - 287
  • [33] Hydrogen microdoping of the near-surface layers of gallium arsenide
    Anisimov, VV
    Demkin, VP
    Kvint, IA
    Mel'nichuk, SV
    Semukhin, BS
    TECHNICAL PHYSICS LETTERS, 2000, 26 (04) : 284 - 287
  • [34] SILICON NEAR-SURFACE DEFECTS INDUCED BY HYDROGEN PLASMA
    JENG, SJ
    OEHRLEIN, GS
    SCILLA, GJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (03) : C127 - C127
  • [35] Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys
    Celik, Fuat E.
    Mavrikakis, Manos
    SURFACE SCIENCE, 2015, 640 : 190 - 197
  • [36] INFLUENCE OF ATOMIC HYDROGEN ON THE SURFACE AND THE NEAR-SURFACE LAYERS OF GERMANIUM CRYSTALS
    Zhavzharov, E. L.
    Matyushin, V. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2005, 50 (01): : 52 - 56
  • [37] Catalytic effect of near-surface alloying on hydrogen interaction on the aluminum surface
    Wang, Yan
    Zhang, Feng
    Stumpf, R.
    Lin, Pei
    Chou, M. Y.
    PHYSICAL REVIEW B, 2011, 83 (19):
  • [38] FREQUENCY-DISTRIBUTION OF WIND SPEED NEAR-SURFACE
    STEWART, DA
    ESSENWANGER, OM
    JOURNAL OF APPLIED METEOROLOGY, 1978, 17 (11): : 1633 - 1642
  • [39] Mantle source to near-surface emplacement of enriched and intermediate poikilitic shergottites in Mars
    Rahib, Rachel R.
    Udry, Arya
    Howarth, Geoffrey H.
    Gross, Juliane
    Paquet, Marine
    Combs, Logan M.
    Laczniak, Dara L.
    Day, James M. D.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2019, 266 : 463 - 496
  • [40] Dust Complex for Studying the Dust Particle Dynamics in the Near-Surface Atmosphere of Mars
    A. V. Zakharov
    G. G. Dolnikov
    I. A. Kuznetsov
    A. N. Lyash
    F. Esposito
    C. Molfese
    I. Arruego Rodríguez
    E. Seran
    M. Godefroy
    A. E. Dubov
    I. V. Dokuchaev
    M. G. Knyazev
    A. V. Bondarenko
    V. M. Gotlib
    V. N. Karedin
    I. A. Shashkova
    M. E. Abdelaal
    A. A. Kartasheva
    A. V. Shekhovtsova
    S. A. Bednyakov
    V. V. Barke
    A. V. Yakovlev
    V. A. Grushin
    A. S. Bychkova
    S. I. Popel
    O. I. Korablev
    D. S. Rodionov
    N. S. Duxbury
    O. F. Petrov
    E. A. Lisin
    M. M. Vasiliev
    A. Yu. Poroikov
    N. D. Borisov
    F. Cortecchia
    B. Saggin
    F. Cozzolino
    D. Brienza
    D. Scaccabarozzi
    G. Mongelluzzo
    G. Franzese
    C. Porto
    A. Martín Ortega Rico
    N. Andrés Santiuste
    J. R. de Mingo
    C. I. Popa
    S. Silvestro
    J. R. Brucato
    Solar System Research, 2022, 56 : 351 - 368