Information Extraction and Visualization of Unstructured Textual Data

被引:0
|
作者
Hashmi, Syed Usama [1 ]
Bansal, Ajay [1 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85287 USA
关键词
Natural Language processing; Information Extraction; Visualization of Unstructured data;
D O I
10.1109/ICSC.2019.00032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is a large amount of textual data on the web that has to be analyzed manually by humans in order to use it in meaningful ways. Techniques that can analyze the data, convert it to meaningful information, connect it with other sources of information, and allow querying would be extremely useful. There are different kinds of textual information available with each kid catering to a different kind of audience. This paper presents an information extraction approach that is a modified traversal algorithm on dependency parse output of text to extract all subject predicate object pairs from text while ensuring that no information is missed out. The output format is designed specifically to fit on a node-edge-node model and form the building blocks of a network that makes understanding of the text and querying of information from corpus quick and intuitive.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条