Random-fractal Ansatz for the configurations of two-dimensional critical systems

被引:5
|
作者
Lee, Ching Hua [1 ]
Ozaki, Dai [2 ]
Matsueda, Hiroaki [3 ]
机构
[1] Inst High Performance Comp, Singapore 138632, Singapore
[2] Tohoku Univ, Dept Appl Phys, Sendai, Miyagi 9808579, Japan
[3] Sendai Natl Coll Technol, Sendai, Miyagi 9893128, Japan
关键词
D O I
10.1103/PhysRevE.94.062144
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Critical systems have always intrigued physicists and precipitated the development of newtechniques. Recently, there has been renewed interest in the information contained in the configurations of classical critical systems, whose computation do not require full knowledge of the wave function. Inspired by holographic duality, we investigated the entanglement properties of the classical configurations (snapshots) of the Potts model by introducing an Ansatz ensemble of random fractal images. By virtue of the central limit theorem, our Ansatz accurately reproduces the entanglement spectra of actual Potts snapshots without any fine tuning of parameters or artificial restrictions on ensemble choice. It provides a microscopic interpretation of the results of previous studies, which established a relation between the scaling behavior of snapshot entropy and the critical exponent. More importantly, it elucidates the role of ensemble disorder in restoring conformal invariance, an aspect previously ignored. Away from criticality, the breakdown of scale invariance leads to a renormalization of the parameter Sigma in the random fractal Ansatz, whose variation can be used as an alternative determination of the critical exponent. We conclude by providing a recipe for the explicit construction of fractal unit cells consistent with a given scaling exponent.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] RANDOM WALK AND DIFFUSION IN TWO-DIMENSIONAL LAGRANGIAN SYSTEMS.
    Peters, Norbert
    Thies, Hans-Juergen
    1982, : 205 - 212
  • [32] Random Matrix Theory and the Boson Peak in Two-Dimensional Systems
    Conyuh, D. A.
    Beltukov, Y. M.
    PHYSICS OF THE SOLID STATE, 2020, 62 (04) : 689 - 695
  • [33] Random Matrix Theory and the Boson Peak in Two-Dimensional Systems
    D. A. Conyuh
    Y. M. Beltukov
    Physics of the Solid State, 2020, 62 : 689 - 695
  • [34] Simulation of Dynamics in Two-Dimensional Vortex Systems in Random Media
    Zhang Wei
    Sun Li-Zhen
    Luo Meng-Bo
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [35] Magnetic properties of two-dimensional random systems of Ising dipoles
    Meilikhov, EZ
    Farzetdinova, RM
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 268 (1-2) : 237 - 250
  • [36] Two-dimensional random projection
    Eftekhari, Armin
    Babaie-Zadeh, Massoud
    Moghaddam, Hamid Abrishami
    SIGNAL PROCESSING, 2011, 91 (07) : 1589 - 1603
  • [37] Fractal Iso-Contours of Passive Scalar in Two-Dimensional Smooth Random Flows
    Vucelja, Marija
    Falkovich, Gregory
    Turitsyn, Konstantin S.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (02) : 424 - 435
  • [38] Fractal Iso-Contours of Passive Scalar in Two-Dimensional Smooth Random Flows
    Marija Vucelja
    Gregory Falkovich
    Konstantin S. Turitsyn
    Journal of Statistical Physics, 2012, 147 : 424 - 435
  • [39] Effect of the Random Error on the Radiation Characteristic of the Reflector Antenna Based on Two-Dimensional Fractal
    Li, Na
    Duan, Baoyan
    Zheng, Fei
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2012, 2012
  • [40] Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array
    Barbara Fazio
    Pietro Artoni
    Maria Antonia Iatì
    Cristiano D'Andrea
    Maria Josè Lo Faro
    Salvatore Del Sorbo
    Stefano Pirotta
    Pietro Giuseppe Gucciardi
    Paolo Musumeci
    Cirino Salvatore Vasi
    Rosalba Saija
    Matteo Galli
    Francesco Priolo
    Alessia Irrera
    Light: Science & Applications, 2016, 5 : e16062 - e16062