Study on the Thermal Conductivity of Mannitol Enhanced by Graphene Nanoparticles for Thermoelectric Power Generation

被引:2
|
作者
Yu, Jia [1 ]
Wang, Haoqing [1 ]
Kong, Li [1 ]
Zhu, Hongji [1 ]
Zhu, Qingshan [1 ]
机构
[1] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-CHANGE MATERIALS; PCM; SYSTEM; DESIGN;
D O I
10.1155/2020/8725390
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The existing thermoelectric materials are greatly affected by the temperature environment, which can provide better power output in a stable temperature environment by using composite phase change material with enhanced heat conduction. The graphene is dispersed in the liquid mannitol to make the nanomixed material. Test results show that the thermal conductivity of mannitol increased from 0.7 Wm(-1) K-1 to 2.07 Wm(-1) K-1, 179.73% times as much. The effective thermal conductivity of mannitol can be increased to 8.4236 Wm(-1) K-1 by using a graphite foam with a porosity of 0.9. After adding 1 wt.% and 5 wt.% graphene particles, the effective thermal conductivity increased to 8.73 Wm(-1) K-1 and 9.63 Wm(-1) K-1, respectively. The simulation results in a large heat source environment show that mannitol with improved thermal conductivity can ensure the stable operation of the thermoelectric material in the optimal temperature environment for 120 s, and the open-circuit voltage is maintained at about 6.5 V in that time.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Enhanced thermal conductivity of graphene nanoplatelets epoxy composites
    Jarosinski, Lukasz
    Rybak, Andrzej
    Gaska, Karolina
    Kmita, Grzegorz
    Porebska, Renata
    Kapusta, Czeslaw
    MATERIALS SCIENCE-POLAND, 2017, 35 (02): : 382 - 389
  • [22] THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF RUTILE (TIO2)
    THURBER, WR
    MANTE, AJH
    PHYSICAL REVIEW, 1965, 139 (5A): : 1655 - &
  • [23] THE THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF BISMUTH TELLURIDE AT LOW TEMPERATURES
    WALKER, PA
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1960, 76 (487): : 113 - 126
  • [24] Thermal conductivity and thermoelectric power of Yb-Au system
    Nakamoto, G
    Nobata, T
    Ueda, S
    Nakajima, Y
    Fujioka, T
    Kurisu, M
    PHYSICA B-CONDENSED MATTER, 1999, 259-61 : 154 - 156
  • [25] THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF GALLIUM ARSENIDE AT LOW TEMPERATURES
    ALIEV, SA
    SHALYT, SS
    SOVIET PHYSICS SOLID STATE,USSR, 1966, 7 (12): : 2986 - &
  • [26] THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF GERMANIUM-SILICON ALLOYS
    STEELE, MC
    ROSI, FD
    JOURNAL OF APPLIED PHYSICS, 1958, 29 (11) : 1517 - 1520
  • [27] MEASUREMENT OF THERMOELECTRIC POWER + THERMAL CONDUCTIVITY ACCORDING TO ABSOLUTE METHOD
    NOREN, B
    BECKMAN, O
    ARKIV FOR FYSIK, 1964, 25 (06): : 567 - &
  • [28] THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF BISMUTH TELLURIDE AT LOW TEMPERATURES
    GOLETSKAYA, AD
    SOLOGUB, VV
    SHALYT, SS
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1971, 5 (03): : 416 - +
  • [29] Graphene-Metal Nanoparticles for Enhancing Thermoelectric Power Factor
    Shiau, Li Lynn
    Goh, Simon Chun Kiat
    Wang, Xingli
    Zhu, Minmin
    Tan, Chuan Seng
    Liu, Zheng
    Tay, Beng Kang
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 1114 - 1118
  • [30] THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF INDIUM ARSENIDE AT LOW TEMPERATURES
    TAMARIN, PV
    SHALYT, SS
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1971, 5 (06): : 1097 - &