A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation

被引:27
|
作者
Wang, Tingchun [1 ]
Guo, Boling [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Kuramoto-Tsuzuki equation; Finite difference method; Convergence; CONVERGENCE;
D O I
10.1016/j.cam.2009.07.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a robust semi-explicit difference scheme for solving the Kuramoto-Tsuzuki equation with homogeneous boundary conditions. Because the prior estimate in L(infinity)-norm of the numerical solutions is very hard to obtain directly, the proofs of convergence and stability are difficult for the difference scheme. In this paper, we first prove the second-order convergence in L(2)-norm of the difference scheme by an induction argument, then obtain the estimate in L(infinity)-norm of the numerical solutions. Furthermore, based on the estimate in L(infinity)-norm, we prove that the scheme is also convergent with second order in L(infinity)-norm. Numerical examples verify the correction of the theoretical analysis. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:878 / 888
页数:11
相关论文
共 50 条
  • [21] UNCONDITIONALLY OPTIMAL ERROR ANALYSIS OF THE SECOND-ORDER BDF FINITE ELEMENT METHOD FOR THE KURAMOTO-TSUZUKI EQUATION
    Li, Yuan
    Cui, Xuewei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (02): : 211 - 223
  • [22] On a semi-explicit fourth-order vector compact scheme for the acoustic wave equation
    Zlotnik, Alexander
    Lomonosov, Timofey
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2025, 40 (01) : 71 - 88
  • [23] A semi-explicit multi-symplectic Fourier pseudospectral scheme for the coupled nonlinear Schrodinger equation
    Fu, Hao
    Qian, Xu
    Song, Songhe
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 408 - 412
  • [24] Unconditionally optimal error estimate of the Crank-Nicolson extrapolation Galerkin finite element method for Kuramoto-Tsuzuki equation
    Yang, Huaijun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [25] Semi-explicit nonlinear second order ordinary differential equation
    Gomaa, I.A.
    Hassan, H.A.
    Sakr, S.Z.
    Advances in Modelling and Analysis A: General Mathematical and Computer Tools, 1992, 11 (01): : 1 - 7
  • [26] A semi-explicit multi-symplectic splitting scheme for a 3-coupled nonlinear Schrodinger equation
    Qian, Xu
    Song, Songhe
    Chen, Yaming
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (04) : 1255 - 1264
  • [27] Convergent semi-explicit scheme to a non-linear eikonal system
    Maryam Al Zohbi
    Ahmad El Hajj
    Mustapha Jazar
    BIT Numerical Mathematics, 2022, 62 : 1841 - 1872
  • [28] Convergent semi-explicit scheme to a non-linear eikonal system
    Al Zohbi, Maryam
    El Hajj, Ahmad
    Jazar, Mustapha
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1841 - 1872
  • [29] GRADIENT ENTROPY ESTIMATE AND CONVERGENCE OF A SEMI-EXPLICIT SCHEME FOR DIAGONAL HYPERBOLIC SYSTEMS
    Monasse, L.
    Monneau, R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 2792 - 2814
  • [30] ERROR-ESTIMATES FOR A SEMI-EXPLICIT NUMERICAL SCHEME FOR STEFAN-TYPE PROBLEMS
    VERDI, C
    VISINTIN, A
    NUMERISCHE MATHEMATIK, 1988, 52 (02) : 165 - 185