In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors

被引:101
|
作者
Ibrahim, Mahmoud A. A. [1 ]
Abdelrahman, Alaa H. M. [1 ]
Hussien, Taha A. [2 ]
Badr, Esraa A. A. [1 ]
Mohamed, Tarik A. [3 ]
El-Seedi, Hesham R. [4 ,5 ]
Pare, Paul W. [6 ]
Efferth, Thomas [7 ]
Hegazy, Mohamed-Elamir F. [3 ,7 ]
机构
[1] Minia Univ, Fac Sci, Chem Dept, Computat Chem Lab, Al Minya 61519, Egypt
[2] Deraya Univ, Fac Pharm, Pharmacognosy Dept, Al Minya, Egypt
[3] Natl Res Ctr, Chem Med Plants Dept, 33 El Bohouth St, Giza 12622, Egypt
[4] Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, S-10691 Stockholm, Sweden
[5] Jiangsu Univ, Int Res Ctr Food Nutr & Safety, Zhenjiang 212013, Jiangsu, Peoples R China
[6] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA
[7] Johannes Gutenberg Univ Mainz, Inst Pharmaceut & Biomed Sci, Dept Pharmaceut Biol, Staudinger Weg 5, D-55128 Mainz, Germany
关键词
Spices; Secondary metabolites; SARS-CoV-2 main protease; Molecular dynamics; Molecular docking; LOPINAVIR/RITONAVIR; ACE2;
D O I
10.1016/j.compbiomed.2020.104046
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coronavirus Disease 2019 (COVID-19) is an infectious illness caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), originally identified in Wuhan, China (December 2019) and has since expanded into a pandemic. Here, we investigate metabolites present in several common spices as possible inhibitors of COVID-19. Specifically, 32 compounds isolated from 14 cooking seasonings were examined as inhibitors for SARS-CoV-2 main protease (MPrn), which is required for viral multiplication. Using a drug discovery approach to identify possible antiviral leads, in silico molecular docking studies were performed. Docking calculations revealed a high potency of salvianolic acid A and curcumin as MPr inhibitors with binding energies of 9.7 and 9.2 kcal/mol, respectively. Binding mode analysis demonstrated the ability of salvianolic acid A and curcumin to form nine and six hydrogen bonds, respectively with amino acids proximal to MPr 's active site. Stabilities and binding affinities of the two identified natural spices were calculated over 40 ns molecular dynamics simulations and compared to an antiviral protease inhibitor (lopinavir). Molecular mechanics-generalized Born surface area energy calculations revealed greater salvianolic acid A affinity for the enzyme over curcumin and lopinavir with energies of 44.8, 34.2 and 34.8 kcal/mol, respectively. Using a STRING database, protein-protein interactions were identified for salvianolic acid A included the biochemical signaling genes ACE, MAPK14 and ESR1; and for curcumin, EGFR and TNF. This study establishes salvianolic acid A as an in silico natural product inhibitor against the SARS-CoV-2 main protease and provides a promising inhibitor lead for in vitro enzyme testing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Potential SARS-CoV-2 main protease inhibitors
    Banerjee, Riddhidev
    Perera, Lalith
    Tillekeratne, L. M. Viranga
    DRUG DISCOVERY TODAY, 2021, 26 (03) : 804 - 816
  • [22] On the origins of SARS-CoV-2 main protease inhibitors
    Janin, Yves L.
    RSC MEDICINAL CHEMISTRY, 2024, 15 (01): : 81 - 118
  • [23] Peptidomimetic inhibitors of SARS-COV-2 main protease
    Angeles Bonache, Ma.
    Algar, Sergio
    Medina, Jessy
    Diaz-Agustin, Aitor
    Bueno, Paula
    Castro, Victoria
    Fabrega, Montserrat
    Coll, Miquel
    Garaigorta, Urtzi
    Gastaminza, Pablo
    Martin Martinez, Mercedes
    Gonzalez-Muniz, Rosario
    JOURNAL OF PEPTIDE SCIENCE, 2024, 30
  • [24] Perspectives on SARS-CoV-2 Main Protease Inhibitors
    Gao, Kaifu
    Wang, Rui
    Chen, Jiahui
    Tepe, Jetze J.
    Huang, Faqing
    Wei, Guo-Wei
    JOURNAL OF MEDICINAL CHEMISTRY, 2021, 64 (23) : 16922 - 16955
  • [25] Computational drug repurposing for the identification of SARS-CoV-2 main protease inhibitors
    Fiorucci, Diego
    Milletti, Eva
    Orofino, Francesco
    Brizzi, Antonella
    Mugnaini, Claudia
    Corelli, Federico
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (16): : 6242 - 6248
  • [26] In silico screening of potential inhibitors from Cordyceps species against SARS-CoV-2 main protease
    Deshmukh, Niketan
    Talkal, Reshma
    Lakshmi, Bhaskaran
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, : 4395 - 4411
  • [27] In Silico Drug Repurposing of Penicillins to Target Main Protease Mpro SARS-CoV-2
    Baby, Krishnaprasad
    Maity, Swastika
    Mehta, Chetan
    Suresh, Akhil
    Nayak, Usha Y.
    Nayak, Yogendra
    PHARMACEUTICAL SCIENCES, 2020, 26 : S52 - S62
  • [28] In-silico drug repurposing for targeting SARS-CoV-2 main protease (Mpro)
    Sharma, Shilpa
    Deep, Shashank
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (07): : 3003 - 3010
  • [29] The SARS-CoV-2 main protease as drug target
    Ullrich, Sven
    Nitsche, Christoph
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2020, 30 (17)
  • [30] Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method
    Zhang, Huijun
    Liang, Boqiang
    Sang, Xiaohong
    An, Jing
    Huang, Ziwei
    VIRUSES-BASEL, 2023, 15 (04):