Face detection based on Two Dimensional Principal Component Analysis and Support Vector Machine

被引:0
|
作者
Zhang, Xiaoyu [1 ]
Pu, Jiexin [2 ]
Huang, Xinhan [2 ]
机构
[1] Henan Univ Sci & Technol, Elect Informat Engn Coll, Luoyang 471039, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Control Sci & Engn, Wuhan, Peoples R China
关键词
face detection; tow-dimensional principal component analysis; support vector machine;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An efficient method of face detection based on Two-Dimensional Principal Component Analysis(PCA) incorporating with Support Vector Machine(SVM) is proposed in this paper. Firstly, a 2DPCA coarse filter with relatively lower computational complexity is applied to the whole input image to filter out most of the non-face, then follows the SVM classifier to make the final decision, so the detection process is speeded up. As opposed to PCA, 2DPCA is based on 2D image matrices rather than 1D vector so the image matrix does not need to be transformed into a vector prior to feature extraction. The experiment results show that the method can effectively detect faces under complicated background, and the processing time is shorter than using SVM alone.
引用
收藏
页码:1488 / +
页数:2
相关论文
共 50 条
  • [31] Fault Diagnosis Based on Principal Component Analysis and Support Vector Machine for Rolling Element Bearings
    Zhou, Zhicai
    Liu, Dongfeng
    Shi, Xinfa
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, ISKE 2013, 2014, 279 : 795 - 803
  • [32] Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine
    Yang, Weiyi
    Si, Yujuan
    Wang, Di
    Guo, Buhao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 101 : 22 - 32
  • [33] Recognition of weed during cotton emergence based on principal component analysis and support vector machine
    Li, Hui
    Qi, Lijun
    Zhang, Jianhua
    Ji, Ronghua
    Qi, L. (qilijun@cau.edu.cn), 1600, Chinese Society of Agricultural Machinery (43): : 184 - 189
  • [34] Identification of interlayers in braided river reservoir based on support vector machine and principal component analysis
    Chen X.
    Xu S.
    Li S.
    He H.
    Liu J.
    Han Y.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (04): : 22 - 31
  • [35] Prediction of Floor Water Bursting Based on Combining Principal Component Analysis and Support Vector Machine
    Liu, Beizhan
    Bing, Liang
    FUZZY INFORMATION AND ENGINEERING 2010, VOL 1, 2010, 78 : 591 - +
  • [36] Robust principal component analysis and support vector machine for detection of microcracks with distributed optical fiber sensors
    Song, Qingsong
    Yan, Guoping
    Tang, Guangwu
    Ansari, Farhad
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 146
  • [37] Independent Component Analysis and Support Vector Machine for face feature extraction
    Antonini, G
    Popovici, V
    Thiran, JP
    AUDIO-AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION, PROCEEDINGS, 2003, 2688 : 111 - 118
  • [38] Intrusion Detection Using Principal Component Analysis and Support Vector Machines
    Mishra, Anukriti
    Cheng, Albert M. K.
    Zhang, Yunpeng
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 907 - 912
  • [39] Algorithms of Two-dimensional principal component analysis for face recognition
    Kukharev, Georgy Alexsandrovich
    Schegoleva, Nadegda Lvovna
    Computer Optics, 2010, 34 (04) : 545 - 551
  • [40] Face recognition with DWT and two-dimensional principal component analysis
    Yin Hongtao
    Fu Ping
    Meng Shengwei
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL I, 2007, : 86 - 89