NMR-assisted protein structure prediction with MELDxMD

被引:19
|
作者
Robertson, James C. [1 ]
Nassar, Roy [1 ,2 ]
Liu, Cong [1 ,2 ]
Brini, Emiliano [1 ]
Dill, Ken A. [1 ,2 ,3 ]
Perez, Alberto [4 ]
机构
[1] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
CASP13; MELD; molecular dynamics; NMR; protein structure prediction; SIDE-CHAIN; BACKBONE; PARAMETERS; SEQUENCE; MODELS; RPF;
D O I
10.1002/prot.25788
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe the performance of MELD-accelerated molecular dynamics (MELDxMD) in determining protein structures in the NMR-data-assisted category in CASP13. Seeded from web server predictions, MELDxMD was found best in the NMR category, over 17 targets, outperforming the next-best groups by a factor of similar to 4 in z-score. MELDxMD gives ensembles, not single structures; succeeds on a 326-mer, near the current upper limit for NMR structures; and predicts structures that match experimental residual dipolar couplings even though the only NMR-derived data used in the simulations was NOE-based ambiguous atom-atom contacts and backbone dihedrals. MELD can use noisy and ambiguous experimental information to reduce the MD search space. We believe MELDxMD is a promising method for determining protein structures from NMR data.
引用
收藏
页码:1333 / 1340
页数:8
相关论文
共 50 条
  • [21] An NMR-assisted laboratory investigation of coal fines migration in fracture proppants during single-phase water production
    Guo, Zhenghuai
    Kang, Nong
    Le-Hussain, Furqan
    FUEL, 2023, 343
  • [22] NMR: prediction of protein flexibility
    Berjanskii, Mark
    Wishart, David S.
    NATURE PROTOCOLS, 2006, 1 (02) : 683 - 688
  • [23] NMR: prediction of protein flexibility
    Mark Berjanskii
    David S Wishart
    Nature Protocols, 2006, 1 : 683 - 688
  • [24] Application of sparse NMR restraints to large-scale protein structure prediction
    Li, W
    Zhang, Y
    Skolnick, J
    BIOPHYSICAL JOURNAL, 2004, 87 (02) : 1241 - 1248
  • [25] Protein Structure Prediction from NMR Hydrogen-Deuterium Exchange Data
    Marzolf, Daniel R.
    Seffernick, Justin T.
    Lindert, Steffen
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (04) : 2619 - 2629
  • [26] Prediction of order parameters based on protein NMR structure ensemble and machine learning
    Wang, Qianqian
    Miao, Zhiwei
    Xiao, Xiongjie
    Zhang, Xu
    Yang, Daiwen
    Jiang, Bin
    Liu, Maili
    JOURNAL OF BIOMOLECULAR NMR, 2024, 78 (02) : 87 - 94
  • [27] A database assisted protein structure prediction method via a swarm intelligence algorithm
    Gao, Pengyue
    Wang, Sheng
    Lv, Jian
    Wang, Yanchao
    Ma, Yanming
    RSC ADVANCES, 2017, 7 (63) : 39869 - 39876
  • [28] NMR AND PROTEIN-STRUCTURE
    JARDETZKY, O
    ALTMAN, R
    MADRID, M
    MAGNETIC RESONANCE AND RELATED PHENOMENA, 1989, : 401 - 412
  • [29] NMR AND PROTEIN-STRUCTURE
    JARDETZKY, O
    ALTMAN, R
    MADRID, M
    BIOFIZIKA, 1989, 34 (05): : 763 - 771
  • [30] Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures
    Bodén, M
    Yuan, Z
    Bailey, TL
    BMC BIOINFORMATICS, 2006, 7 (1)