Ge growth on ion-irradiated Si self-affine fractal surfaces

被引:7
|
作者
Goswami, DK [1 ]
Bhattacharjee, K [1 ]
Dev, BN [1 ]
机构
[1] Inst Phys, Bhubaneswar 751005, Orissa, India
关键词
dendritic and/or fractile surfaces; growth; ion bombardment; germanium; silicon; scanning tunneling microscopy;
D O I
10.1016/j.susc.2004.06.201
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have carried out scanning tunneling microscopy experiments under ultrahigh vacuum condition to study the morphology of ultrathin Ge films deposited on pristine Si(l 0 0) and ion-irradiated Si(I 0 0) self-affine fractal surfaces. The pristine and the ion-irradiated Si(I 00) surfaces have roughness exponents of alpha = 0.19 +/- 0.05 and 0.82 +/- 0.04, respectively. These measurements were carried out on two halves of the same sample where only one half was ion-irradiated. Following deposition of a thin film of Ge (similar to6 Angstrom) the roughness exponents change to 0.11 +/- 0.04 and 0.99 +/- 0.06, respectively. Upon Ge deposition, while the roughness increases by more than an order of magnitude on the pristine surface, a smoothing is observed for the ion-irradiated surface. For the ion-irradiated surface the correlation length increases from 32 to 137 nm upon Ge deposition. Ge grows on Si surfaces in the Stranski-Krastanov or layer-plus-island mode where islands grow on a wetting layer of about three atomic layers. On the pristine surface the islands are predominantly of square or rectangular shape, while on the ion-irradiated surface the islands are nearly diamond shaped. Changes of adsorption behaviour of deposited atoms depending on the roughness exponent (or the fractal dimension) of the substrate surface are discussed. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 50 条
  • [31] Self-Affine Surface Roughness of Chemically and Thermally Cleaned Ge(100) Surfaces
    Fleischmann, C.
    Houssa, M.
    Sioncke, S.
    Beckhoff, B.
    Mueller, M.
    Hoenicke, P.
    Meuris, M.
    Temst, K.
    Vantomme, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (10) : H1090 - H1096
  • [32] Self-affine fractal functions and wavelet series
    Singer, P
    Zajdler, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) : 518 - 551
  • [33] FRACTAL PERCOLATION ON STATISTICALLY SELF-AFFINE CARPETS
    Falconer, Kenneth
    Feng, Tianyi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) : 1121 - 1134
  • [34] DYNAMIC FRICTION OF SELF-AFFINE SURFACES
    SCHMITTBUHL, J
    VILOTTE, JP
    ROUX, S
    JOURNAL DE PHYSIQUE II, 1994, 4 (02): : 225 - 237
  • [35] Membranes on rough self-affine surfaces
    Palasantzas, G
    Backx, G
    PHYSICAL REVIEW B, 1996, 54 (11): : 8213 - 8217
  • [36] Copulae, Self-Affine Functions, and Fractal Dimensions
    Enrique de Amo
    Manuel Díaz Carrillo
    Juan Fernández Sánchez
    Mediterranean Journal of Mathematics, 2014, 11 : 1275 - 1287
  • [37] FRACTAL GROWTH AT DENDRITE TIPS IN AN ION-IRRADIATED THIN SOLID FILM
    HUANG, LJ
    LI, HD
    LIU, BX
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1988, 10 (09): : 1117 - 1123
  • [38] Self-affine properties of fracture surfaces
    Balankin, AS
    Sandoval, FJ
    REVISTA MEXICANA DE FISICA, 1997, 43 (04) : 545 - 591
  • [39] Membranes on rough self-affine surfaces
    Palasantzas, G.
    Backx, G.
    Physical Review B: Condensed Matter, 54 (11):
  • [40] WETTING ON ROUGH SELF-AFFINE SURFACES
    PALASANTZAS, G
    PHYSICAL REVIEW B, 1995, 51 (20): : 14612 - 14615