MFIS - Mining frequent itemsets on data streams

被引:0
|
作者
Xie, Zhi-jun [1 ]
Chen, Hong [1 ]
Li, Cuiping [1 ]
机构
[1] Renmin Univ, Sch Informat, Beijing 100872, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an efficient approach to mine frequent Itemsets on data streams. It is a memory efficient and accurate one-pass algorithm that can deal with batch updates. The proposed algorithm performers well by dividing all frequent itemsets into frequent equivalence classes and pruning all redundant itemsets except for those that represent GLB (Greatest Lower Bound) and LUB (Least Upper Bound) of the frequent equivalence classes. The number of GLB and LUB is much less than the number of frequent itemsets. The experimental evaluation on synthetic and real datasets shows that the algorithm is very accurate and requires significantly lower memory than other well-known one-pass algorithms.
引用
收藏
页码:1085 / 1093
页数:9
相关论文
共 50 条
  • [21] Online mining (recently) maximal frequent itemsets over data streams
    Li, HF
    Lee, SY
    Shan, MK
    15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications, Proceedings, 2005, : 11 - 18
  • [22] Mining maximal frequent itemsets in a sliding window over data streams
    Mao Y.
    Li H.
    Yang L.
    Liu L.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (11): : 1142 - 1148
  • [23] An Efficient Frequent Closed Itemsets Mining Algorithm Over Data Streams
    Tan, Jun
    Yu, Shao-jun
    2011 SECOND INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND EDUCATION APPLICATION (ICEA 2011), 2011, : 197 - 201
  • [24] Mining recent frequent itemsets in sliding windows over data streams
    Congying Han
    Lijun Xu
    Guoping He
    COMPUTING AND INFORMATICS, 2008, 27 (03) : 315 - 339
  • [25] Mining recent frequent itemsets in data streams by radioactively attenuating strategy
    Jia, LF
    Wang, Z
    Zhou, CG
    Xu, XJ
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 804 - 811
  • [26] An Efficient Frequent Closed Itemsets Mining Algorithm Over Data Streams
    Tan, Jun
    Bu, Yingyong
    Yang, Bo
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 3, PROCEEDINGS, 2009, : 65 - +
  • [27] An algorithm for mining frequent closed itemsets with density from data streams
    Caiyan D.
    Ling C.
    Caiyan, Dai (daicaiyan@gmail.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (12): : 146 - 154
  • [28] Mining Frequent Itemsets from Online Data Streams: Comparative Study
    Nabil, HebaTallah Mohamed
    Eldin, Ahmed Sharaf
    Belal, Mohamed Abd El-Fattah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (07) : 117 - 125
  • [29] An algorithm for mining frequent closed itemsets with density from data streams
    Dai Caiyan
    Chen Ling
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2016, 12 (2-3) : 146 - 154
  • [30] An efficient algorithm for mining maximal frequent itemsets over data streams
    Mao Y.
    Yang L.
    Li H.
    Chen Z.
    Liu L.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (03): : 246 - 252