An Angle-Based Bi-Objective Evolutionary Algorithm for Many-Objective Optimization

被引:1
|
作者
Yang, Feng [1 ,3 ]
Wang, Shenwen [1 ,3 ]
Zhang, Jiaxing [1 ,3 ]
Gao, Na [1 ,3 ]
Qu, Jun-Feng [2 ]
机构
[1] Hebei GEO Univ, Sch Informat Engn, Shijiazhuang 050031, Hebei, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang 441053, Peoples R China
[3] Hebei GEO Univ, Lab Artificial Intelligence & Machine Learning, Shijiazhuang 050031, Hebei, Peoples R China
关键词
Estimation; Optimization; Convergence; Evolutionary computation; Diversity methods; Sociology; Statistics; Many-objective optimization; evolutionary algorithm; convergence; diversity; bi-objective; OPTIMALITY; SELECTION;
D O I
10.1109/ACCESS.2020.3032681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the main difficulties in solving many-objective optimization is the lack of selection pressure. For an optimization problem, its main purpose is to obtain a nondominated solution set with better convergence and diversity. In this paper, two estimation methods are proposed to convert a many-objective optimization problem into a simple bi-objective optimization problem, that is, the convergence and diversity estimation methods, so as to greatly improve the probability of certain dominance relation between solutions, and then increase the selection pressure. Based on the proposed estimation methods, a new many-objective evolutionary algorithm, termed ABOEA, is proposed. In the convergence estimation method, we use a modified ASF function to solve the performance degradation of the traditional norm distance on the irregular Pareto front. In the diversity estimation method, we innovatively propose a diversity estimation method based on the angle between solutions. Empirical experimental results demonstrate that the proposed algorithm shows its competitiveness against the state-of-art algorithms in solving many-objective optimization problems. Two estimation methods proposed in this paper can greatly improve the performance of algorithms in solving many-objective optimization problems.
引用
收藏
页码:194015 / 194026
页数:12
相关论文
共 50 条
  • [31] Evolutionary Many-Objective Optimization
    Jin, Yaochu
    Miettinen, Kaisa
    Ishibuchi, Hisao
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (01) : 1 - 2
  • [32] Evolutionary many-objective optimization
    Ishibuchi, Hisao
    Tsukamoto, Noritaka
    Nojima, Yusuke
    2008 3RD INTERNATIONAL WORKSHOP ON GENETIC AND EVOLVING FUZZY SYSTEMS, 2008, : 45 - 50
  • [33] Evolutionary Many-Objective Optimization
    Ishibuchi, Hisao
    Sato, Hiroyuki
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 614 - 661
  • [34] A Novel Objective Grouping Evolutionary Algorithm for Many-Objective Optimization Problems
    Guo, Xiaofang
    Wang, Xiaoli
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (06)
  • [35] A many-objective evolutionary algorithm based on vector angle distance scaling
    Li, Xin
    Li, Xiaoli
    Wang, Kang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 10285 - 10306
  • [36] A Many-Objective Evolutionary Algorithm Based on New Angle Penalized Distance
    Fang, Junchao
    Fang, Wei
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1896 - 1903
  • [37] Objective Reduction Algorithm Based on Decomposition and Hyperplane Approximation for Evolutionary Many-Objective Optimization
    Liu Hailin
    Xiao Junrong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (09) : 3289 - 3298
  • [38] A Projection-Based Evolutionary Algorithm for Multi-Objective and Many-Objective Optimization
    Peng, Funan
    Lv, Li
    Chen, Weiru
    Wang, Jun
    PROCESSES, 2023, 11 (05)
  • [39] A diversity ranking based evolutionary algorithm for multi-objective and many-objective optimization
    Chen, Guoyu
    Li, Junhua
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 48 : 274 - 287
  • [40] A model-based evolutionary algorithm for bi-objective optimization
    Zhou, AM
    Zhang, QF
    Jin, YC
    Tsang, E
    Okabe, T
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2568 - 2575