Experimental and numerical study on the emission characteristics of laminar premixed biogas-hydrogen impinging flame

被引:24
|
作者
Wei, Z. L. [1 ]
Zhen, H. S. [1 ]
Leung, C. W. [1 ]
Cheung, C. S. [1 ]
Huang, Z. H. [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
关键词
Total emissions; Flame impingement; NO formation; NO2; production; Biogas-hydrogen fuel; HEAT-TRANSFER CHARACTERISTICS; LOW-REYNOLDS-NUMBER; HOT BURNED GAS; MIXING REGION; NO2; FORMATION; JET FLAMES; COOL AIR; METHANE; TEMPERATURE;
D O I
10.1016/j.fuel.2017.01.056
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The total emissions (EICO, EINOx, EINO2 and NO2/NOx ratio) of laminar premixed biogas-hydrogen impinging flame were obtained experimentally while a computational model was developed to calculate the impinging flame. The NO amount produced via different routes (thermal, prompt, NNH and N2O routes) were isolated and calculated in the simulation. The effects of separated distance and equivalence ratio on the emission formation were discussed quantitatively. The results are summarized as follows. The lower values of EICO at small and large H are caused by the weakened fuel oxidization and improved CO oxidization, respectively, and the EICO is increased with phi owing to the increasingly incomplete fuel oxidization. The NO amounts of thermal, prompt, NNH and N2O routes and their contributions on total NO are affected considerably by the separated distance. The decreased prompt NO with H leads to the initial drop of EINOx at fuel-rich condition. The thermal NO and NNH route dominate the NO formation at phi = 0.8 and 1.0, while the contribution of prompt NO is improved significantly at fuel -rich condition. The rising trend of EINOx with phi is primarily predominated by the enhanced prompt NO. As H is enhanced, the rising and dropping trends of EINO2, as well as NO2/NOx ratio, are caused by more intensive air entrainment, promoting the NO2 formation, and the extended high temperature region, accelerating the NO formation and the NO2 destruction, respectively. The enhanced EINO2 with phi is primarily caused by the increased H atom in the air mixing region to promote the HO2 formation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Experimental and kinetic modeling study on laminar flame speeds and emission characteristics of oxy-ammonia premixed flames
    Zhang, Yu
    Zhang, Wenda
    Yu, Boshuai
    Li, Xincheng
    Zhang, Linyao
    Zhao, Yijun
    Sun, Shaozeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 63 : 857 - 870
  • [22] Single-valued prediction of markers on heat release rate for laminar premixed biogas-hydrogen and methane-hydrogen flames
    Wei, Z. L.
    Leung, C. W.
    Cheung, C. S.
    Huang, Z. H.
    ENERGY, 2017, 133 : 35 - 45
  • [23] Formations and emissions of CO/NO2/NOx in the laminar premixed biogas-hydrogen flame undergoing the flame-wall interaction: Effects of the variable CO2 proportion
    Wei, Zhilong
    Zhen, Haisheng
    Leung, Chunwah
    Cheung, Chunshun
    Huang, Zuohua
    FUEL, 2020, 276
  • [24] Thermal characteristics of a premixed impinging circular laminar-flame jet with induced swirl
    Huang, XQ
    Leung, CW
    Chan, CK
    Probert, SD
    APPLIED ENERGY, 2006, 83 (04) : 401 - 411
  • [25] Experimental and numerical study of laminar premixed dimethyl ether/methane-air flame
    Yu, Huibin
    Hu, Erjiang
    Cheng, Yu
    Zhang, Xinyi
    Huang, Zuohua
    FUEL, 2014, 136 : 37 - 45
  • [26] Experimental study of emission characteristics for fully premixed combustion of dimethyl ether and hydrogen based on flame ions
    Cui, Yang
    Liu, Fengguo
    Cao, Shihua
    Ma, Yan
    Niu, Yunge
    Zhao, Dongfang
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 114
  • [27] Experimental and Numerical Study of the Laminar Burning Velocity of Biogas-Ammonia-Air Premixed Flames
    Brequigny, Pierre
    Soule, Adnane
    Mounaim-Rousselle, Christine
    Dayma, Guillaume
    Halter, Fabien
    ENERGIES, 2024, 17 (02)
  • [28] Experimental and numerical study on the laminar burning velocity of hydrogen enriched biogas mixture
    Wei, Zhilong
    Zhen, Haisheng
    Fu, Jin
    Leung, Chunwah
    Cheung, Chunshun
    Huang, Zuohua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (39) : 22240 - 22249
  • [29] Experimental and Numerical Investigation of Fe(CO)5 Addition to a Laminar Premixed Hydrogen/Oxygen/Argon Flame
    Staude, S.
    Hecht, C.
    Wlokas, I.
    Schulz, C.
    Atakan, B.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2009, 223 (4-5): : 639 - 649
  • [30] Experimental investigation on combustion and emission characteristics of non-premixed ammonia/hydrogen flame
    Zhang, Fangyu
    Zhang, Gengxin
    Wang, Zhongcheng
    Wu, Dawei
    Jangi, Mehdi
    Xu, Hongming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 61 : 25 - 38