Bucket of Deep Transfer Learning Features and Classification Models for Melanoma Detection

被引:19
|
作者
Manzo, Mario [1 ]
Pellino, Simone [2 ]
机构
[1] Univ Naples LOrientale, Informat Technol Serv, I-80121 Naples, Italy
[2] IS Mattei Aversa MIUR, Dept Appl Sci, I-81031 Rome, Italy
关键词
melanoma detection; deep learning; transfer learning; ensemble classification; METHODOLOGICAL APPROACH; DIAGNOSIS; NETWORK;
D O I
10.3390/jimaging6120129
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Malignant melanoma is the deadliest form of skin cancer and, in recent years, is rapidly growing in terms of the incidence worldwide rate. The most effective approach to targeted treatment is early diagnosis. Deep learning algorithms, specifically convolutional neural networks, represent a methodology for the image analysis and representation. They optimize the features design task, essential for an automatic approach on different types of images, including medical. In this paper, we adopted pretrained deep convolutional neural networks architectures for the image representation with purpose to predict skin lesion melanoma. Firstly, we applied a transfer learning approach to extract image features. Secondly, we adopted the transferred learning features inside an ensemble classification context. Specifically, the framework trains individual classifiers on balanced subspaces and combines the provided predictions through statistical measures. Experimental phase on datasets of skin lesion images is performed and results obtained show the effectiveness of the proposed approach with respect to state-of-the-art competitors.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Automated Brain Disease Classification using Transfer Learning based Deep Learning Models
    Alam, Farhana
    Tisha, Farhana Chowdhury
    Rahman, Sara Anisa
    Sultana, Samia
    Chowdhury, Md. Ahied Mahi
    Reza, Ahmed Wasif
    Shamsul, Mohammad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 941 - 949
  • [42] Brain tumor classification using deep CNN features via transfer learning
    Deepak, S.
    Ameer, P. M.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 111
  • [43] Eye Disease Detection Using Deep Learning Models with Transfer Learning Techniques
    Vardhan, Kalla Bharath
    Nidhish, Mandava
    Kiran, C. Surya
    Shameem, D. Nahid
    Charan, V. Sai
    Bhavadharini, R. M.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2025, 12 (01):
  • [44] Deep Transfer Learning Based Detection and Classification of Citrus Plant Diseases
    Faisal, Shah
    Javed, Kashif
    Ali, Sara
    Alasiry, Areej
    Marzougui, Mehrez
    Khan, Muhammad Attique
    Cha, Jae-Hyuk
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 895 - 914
  • [45] Unmanned Aerial Vehicle Classification and Detection Based on Deep Transfer Learning
    Meng, Wei
    Tia, Meng
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 280 - 285
  • [46] On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning
    Fraiwan, Mohammad
    Faouri, Esraa
    SENSORS, 2022, 22 (13)
  • [47] Deep Transfer Learning Driven Oral Cancer Detection and Classification Model
    Marzouk, Radwa
    Alabdulkreem, Eatedal
    Dhahbi, Sami
    Nour, Mohamed K.
    Al Duhayyim, Mesfer
    Othman, Mahmoud
    Hamza, Manar Ahmed
    Motwakel, Abdelwahed
    Yaseen, Ishfaq
    Rizwanullah, Mohammed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3905 - 3920
  • [48] Automatic Detection of Skin Cancer Melanoma Using Transfer Learning in Deep Network
    Wang, Xuyiling
    Yang, Ying
    Mandal, Bappaditya
    INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, ICOBE 2021, 2023, 2562
  • [49] Detection System for Construction Image Classification Based on Deep Learning Models
    Dai, Jiajie
    Liu, Ruijun
    Luo, Ouwen
    Ning, Zhiyuan
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 728 - 731
  • [50] Detection and classification of brain tumor using hybrid deep learning models
    Baiju Babu Vimala
    Saravanan Srinivasan
    Sandeep Kumar Mathivanan
    Prabhu Mahalakshmi
    Gemmachis Teshite Jayagopal
    Scientific Reports, 13