Addition of glycerol enhances the flexibility of gelatin hydrogel sheets; application for in utero tissue engineering

被引:12
|
作者
Watanabe, Miho [1 ,2 ,6 ]
Li, Haiying [1 ,2 ]
Yamamoto, Masaya [3 ,4 ]
Horinaka, Jun-ichi [5 ]
Tabata, Yasuhiko [3 ]
Flake, Alan W. [1 ,2 ]
机构
[1] Childrens Hosp Philadelphia, Dept Surg, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Childrens Ctr Fetal Res, Philadelphia, PA 19104 USA
[3] Kyoto Univ, Inst Frontier Med Sci, Dept Biomat Field Tissue Engn, Kyoto, Japan
[4] Tohoku Univ, Grad Sch Engn, Dept Marial Proc, Sendai, Miyagi, Japan
[5] Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Kyoto, Japan
[6] Osaka Univ, Grad Sch Med, Dept Pediat Surg, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
关键词
fetal therapy; flexible sheet; gelatin hydrogel; plasticizer; PRENATAL CLOSURE; STEM-CELLS; SCAFFOLD; MYELOMENINGOCELE; CHONDROCYTES; NANOFIBER; CARRIER; MODEL;
D O I
10.1002/jbm.b.34756
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gelatin hydrogels are naturally derived scaffolds useful for tissue engineering because of their cytocompatibility and controllable degradability. However, they are brittle and inflexible when dry, which limits their use for in utero tissue engineering in large animal models. Therefore, in this study, we attempted to generate flexible gelatin sheets by adding various plasticizers with different molecular weights (MW). We systematically evaluated the flexibility, sustainability, and potential clinical utility of the resulting flexible gelatin sheets. Gelatin sheets with low-MW plasticizers, such as monosaccharides or sugar alcohols, showed a reduced tensile modulus in dynamic viscoelasticity, which reflected their actual flexibility. Wet gelatin sheets containing plasticizers showed higher tensile strength than the nonplasticizer control, although wet gelatin sheets under all conditions had a much lower tensile strength than dry gelatin sheets. In a functional study, gelatin sheets containing glycerol, which has the lowest MW among sugar alcohols, showed encouraging results, such as good fit to the curvature of the experimental animal, biocompatibility, and suitability for endoscopic approaches. The findings of this study should enable the expansion of future applications for flexible gelatin sheets.
引用
收藏
页码:921 / 931
页数:11
相关论文
共 50 条
  • [31] Micro-patterned gelatin-genipin hydrogel for skeletal muscle tissue engineering
    Gattazzo, F.
    Orsi, G.
    Vozzi, G.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 351 - 352
  • [32] A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering
    Pok, Seokwon
    Myers, Jackson D.
    Madihally, Sundararajan V.
    Jacot, Jeffrey G.
    ACTA BIOMATERIALIA, 2013, 9 (03) : 5630 - 5642
  • [33] Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications
    Ye, Jing
    Xiao, Zhenghua
    Gao, Lu
    Zhang, Jing
    He, Ling
    Zhang, Han
    Liu, Qi
    Yang, Gang
    BIOMEDICAL MATERIALS, 2021, 16 (04)
  • [34] Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate-Gelatin Hydrogel for Tissue Engineering
    Bang, Sumi
    Jung, Ui-Won
    Noh, Insup
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 15 (01) : 25 - 35
  • [35] Powdered Cross-Linked Gelatin Methacryloyl as an Injectable Hydrogel for Adipose Tissue Engineering
    De Maeseneer, Tess
    Van Damme, Lana
    Aktan, Merve Kubra
    Braem, Annabel
    Moldenaers, Paula
    Van Vlierberghe, Sandra
    Cardinaels, Ruth
    GELS, 2024, 10 (03)
  • [36] 3D HYDROGEL MICROENVIROMENTS OF GELATIN AND HYALURONIC ACID FOR LIVER TISSUE ENGINEERING
    Gallego-Ferrer, Gloria
    Rodriguez-Fernandez, Julio
    Garcia-Legler, Emma
    Clara-Trujillo, Sandra
    Teresa Donato, M.
    Salmeron-Sanchez, Manuel
    Tolosa, Laia
    TISSUE ENGINEERING PART A, 2022, 28 : S15 - S15
  • [37] Enzyme-Crosslinked Electrospun Fibrous Gelatin Hydrogel for Potential Soft Tissue Engineering
    Nie, Kexin
    Han, Shanshan
    Yang, Jianmin
    Sun, Qingqing
    Wang, Xiaofeng
    Li, Xiaomeng
    Li, Qian
    POLYMERS, 2020, 12 (09) : 1 - 16
  • [38] Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications
    Sharifi, Sina
    Islam, Mohammad Mirazul
    Sharifi, Hannah
    Islam, Rakibul
    Koza, Darrell
    Reyes-Ortega, Felisa
    Alba-Molina, David
    Nilsson, Per H.
    Dohlman, Claes H.
    Mollnes, Tom Eirik
    Chodosh, James
    Gonzalez-Andrades, Miguel
    BIOACTIVE MATERIALS, 2021, 6 (11) : 3947 - 3961
  • [39] Synthesis of Silanized Bioactive Glass/Gelatin Methacrylate (GelMA/Si-BG) composite hydrogel for Bone Tissue Engineering Application
    Chen, Hsuan
    Lin, Yuan-Min
    Bupphathong, Sasinan
    Lim, Joshua
    Huang, Jing-En
    Huang, Wei
    Hsieh, Tiffany Angela S.
    Lin, Chih-Hsin
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2023, 147
  • [40] Influence of gelatin modification on enzymatically-gellable pectin-gelatin hydrogel properties for soft tissue engineering applications
    Ebrahimzadeh, Asal
    Khanalizadeh, Elnaz
    Khodabakhshaghdam, Shahla
    Kazemi, Davoud
    Baradar Khoshfetrat, Ali
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2022, 37 (05) : 381 - 391