Pr6O11-Coated High Capacity Layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 as a Cathode Material for Lithium Ion Batteries

被引:16
|
作者
Meng, Haixing [1 ]
Jin, Huifen [2 ]
Gao, Junkui [2 ]
Zhang, Lei [1 ]
Xu, Qiang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Li Shen Battery Join Stock Co Ltd, Tianjin 300384, Peoples R China
关键词
SURFACE MODIFICATION; ELECTROCHEMICAL PERFORMANCE; PRASEODYMIUM OXIDE; HIGH-VOLTAGE; OXYGEN LOSS; IMPROVEMENT; LI(LI0.17NI0.25MN0.58)O-2; CONDUCTIVITY; CHEMISTRY; NI;
D O I
10.1149/2.0071410jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A Li-rich layered oxide Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 is synthesized and coated with Pr6O11 by a chemical deposition method. The pristine and the Pr6O11-coated Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathodes are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and charge-discharge measurements. After coating of Pr6O11, the bulk crystallographic structure, morphology and grain size of the layered Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 are not essentially changed. Compared to the pristine Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathode, the Pr6O11-coated Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathodes coated with suitable thickness exhibit higher discharge capacity with lower irreversible capacity loss, better cyclability and higher rate capability. Especially, 5 wt% Pr6O11-coated sample displays the highest capacity (277.9 mAh g(-1) at 0.05 C rate), the best rate capability (196.2 mAh g(-1) at 1C rate) and the best cyclability (capacity retention of 91.2% in 50 cycles). Of particular concern is the polarization behavior of Pr6O11-coated cathodes coated with suitable thickness. Impedance analysis demonstrates that the rate capability of Pr6O11-coated cathodes are mainly affected by the lithium ion diffusion resistance through the surface layer (solid-electrolyte interfacial (SEI) layer and Pr6O11 coating), while influences of the faradaic charge transfer resistance is negligible. This work shows a promising approach to improve the electrochemical performance of Li-rich layered oxides by surface modification of semiconductor materials. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1564 / A1571
页数:8
相关论文
共 50 条
  • [31] Preparation and Electrochemical Performance of Li-rich Cathode Material Li1.17[Ni0.17Co0.17Mn0.50]O2 Synthesized by Solid State Method via Acetate Precursor for Li-ion Batteries
    Liu, Xinnuan
    Zhou, Luozeng
    Xu, Qunjie
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (11): : 8899 - 8909
  • [32] A novel layered Li[Li0.12NizMg0.32-zMn0.56]O2 cathode material for lithium-ion batteries
    Lee, CW
    Sun, YK
    Prakash, J
    ELECTROCHIMICA ACTA, 2004, 49 (25) : 4425 - 4432
  • [33] Enhanced high rate performance of Li[Li0.17Ni0.2Co0.05Mn0.58-xAlx]O2-0.5x cathode material for lithium-ion batteries
    Wang, Y. L.
    Huang, X.
    Li, F.
    Cao, J. S.
    Ye, S. H.
    RSC ADVANCES, 2015, 5 (61) : 49651 - 49656
  • [34] Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries
    Wang, Dandan
    Zhang, Xiaoping
    Xiao, Ruijuan
    Lu, Xia
    Li, Yaping
    Xu, Tinghua
    Pan, Du
    Hu, Yong-Sheng
    Bai, Ying
    ELECTROCHIMICA ACTA, 2018, 265 : 244 - 253
  • [35] Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach
    Shevtsov, Andrey
    Han, Haixiang
    Morozov, Anatolii
    Carozza, Jesse C.
    Savina, Aleksandra A.
    Shakhova, Iaroslava
    Khasanova, Nellie R.
    Antipov, Evgeny, V
    Dikarev, Evgeny, V
    Abakumov, Artem M.
    NANOMATERIALS, 2020, 10 (09) : 1 - 16
  • [36] Graphene modified Li- rich cathode material Li[Li0.26Ni0.07Co0.07Mn0.56]O2 for lithium ion battery
    Li, Xiangjun
    Xin, Hongxing
    Qin, Xiaoying
    Yuan, Xueqin
    Li, Di
    Zhang, Jian
    Song, Chunjun
    Wang, Ling
    Sun, Guolong
    Liu, Yongfei
    FUNCTIONAL MATERIALS LETTERS, 2014, 7 (06)
  • [37] ELECTROCHEMICAL PERFORMANCES OF COMPOSITE CATHODE MATERIALS Li1.2Ni0.17Co0.10Mn0.53O2 and Li1.2Ni0.2Mn0.6O2
    Lanina, E. V.
    Zhuravlev, V. D.
    Ermakova, L. V.
    Petrov, A. N.
    Pachuev, A. V.
    Sheldeshov, N. V.
    ELECTROCHIMICA ACTA, 2016, 212 : 810 - 821
  • [38] Theoretical Study on the Structural Stability and Oxygen Ion Oxidation of Al-doped Lithium-ion Battery Layered Cathode Li(Li0.17Ni0.17Al0.04Fe0.13Mn0.49)O2
    Qiu, Kai
    Yan, Mingxia
    Zhao, Shouwang
    An, Shengli
    Wang, Wei
    Jia, Guixiao
    ACTA CHIMICA SINICA, 2021, 79 (09) : 1146 - 1153
  • [39] Improved electrochemical and thermal performances of layered Li [Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification
    Zhang, Xiaoping
    Sun, Shuwei
    Wu, Qing
    Wan, Ning
    Pan, Du
    Bai, Ying
    JOURNAL OF POWER SOURCES, 2015, 282 : 378 - 384
  • [40] In situ polyaniline modified cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries
    Xue, Qingrui
    Li, Jianling
    Xu, Guofeng
    Zhou, Hongwei
    Wang, Xindong
    Kang, Feiyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) : 18613 - 18623