Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds

被引:12
|
作者
Steer, Philippe [1 ]
Guerit, Laure [1 ]
Lague, Dimitri [1 ]
Crave, Alain [1 ]
Gourdon, Aurelie [1 ]
机构
[1] Univ Rennes, CNRS, Geosci Rennes, UMR 6118, F-35000 Rennes, France
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
FROM-MOTION PHOTOGRAMMETRY; DIGITAL IMAGES; BRAIDED RIVER; EXTRACTION; PRECISION; TRANSPORT; SEDIMENTS; TOOL;
D O I
10.5194/esurf-10-1211-2022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The grain-scale morphology and size distribution of sediments are important factors controlling the erosion efficiency, sediment transport and the aquatic ecosystem quality. In turn, characterizing the spatial evolution of grain size and shape can help understand the dynamics of erosion and sediment transport in coastal, hillslope and fluvial environments. However, the size distribution of sediments is generally assessed using insufficiently representative field measurements, and determining the grain-scale shape of sediments remains a real challenge in geomorphology. Here we determine the size distribution and grain-scale shape of sediments located in coastal and river environments with a new methodology based on the segmentation and geometric fitting of 3D point clouds. Point cloud segmentation of individual grains is performed using a watershed algorithm applied here to 3D point clouds. Once the grains are segmented into several sub-clouds, each grain-scale morphology is determined by fitting a 3D geometrical model applied to each sub-cloud. If different geometrical models can be tested, this study focuses mostly on ellipsoids to describe the geometry of grains. G3Point is a semi-automatic approach that requires a trial-and-error approach to determine the best combination of parameter values. Validation of the results is performed either by comparing the obtained size distribution to independent measurements (e.g., hand measurements) or by visually inspecting the quality of the segmented grains. The main benefits of this semi-automatic and non-destructive method are that it provides access to (1) an un-biased estimate of surface grain-size distribution on a large range of scales, from centimeters to meters; (2) a very large number of data, mostly limited by the number of grains in the point cloud data set; (3) the 3D morphology of grains, in turn allowing the development of new metrics that characterize the size and shape of grains; and (4) the in situ orientation and organization of grains. The main limit of this method is that it is only able to detect grains with a characteristic size significantly greater than the resolution of the point cloud.
引用
收藏
页码:1211 / 1232
页数:22
相关论文
共 50 条
  • [21] A semi-automatic approach for joint orientation recognition using 3D trace network analysis
    Mehrishal, Seyedahmad
    Kim, Jineon
    Song, Jae-Joon
    Sainoki, Atsushi
    ENGINEERING GEOLOGY, 2024, 332
  • [22] Automatic Generation of 3D Building Models from Point Clouds
    Hron, Vojtech
    Halounova, Lena
    GEOINFORMATICS FOR INTELLIGENT TRANSPORTATION, 2015, : 109 - 119
  • [23] Semi-automatic semantic tagging of 3D images from pancreas cells
    Little, Suzanne
    Salvetti, Ovidio
    Perner, Petra
    ADVANCES IN MASS DATA ANALYSIS OF SIGNALS AND IMAGES IN MEDICINE BIOTECHNOLOGY AND CHEMISTRY, 2007, 4826 : 69 - 79
  • [24] Automatic 3D Point Clouds Registration Method
    Wu Ting
    Lv Naiguang
    Lou Xiaoping
    Sun Peng
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS, 2010, 7855
  • [25] Shape Recognition in 3D Point-Clouds
    Schnabel, Ruwen
    Wessel, Raoul
    Wahl, Roland
    Klein, Reinhard
    WSCG 2008, FULL PAPERS, 2008, : 65 - 72
  • [26] Registration of point clouds for 3D shape inspection
    Shi, Quan
    Xi, Ning
    Chen, Yifan
    Sheng, Weihua
    2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, : 235 - +
  • [27] Semi-automatic detection of faults in 3D seismic data
    Tingdahl, KM
    de Rooij, M
    GEOPHYSICAL PROSPECTING, 2005, 53 (04) : 533 - 542
  • [28] 3D semi-automatic segmentation of the cochlea and inner ear
    Diao Xianfen
    Chen Siping
    Liang Changhong
    Wang Yuanmei
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6285 - 6288
  • [29] APPROACH FOR THE SEMI-AUTOMATIC VERIFICATION OF 3D BUILDING MODELS
    Helmholz, P.
    Belton, D.
    Moncrieff, S.
    ISPRS HANNOVER WORKSHOP 2013, 2013, 40-1 (W-1): : 121 - 126
  • [30] Semi-Supervised Semantic Segmentation Network for Point Clouds Based on 3D Shape
    Zhang, Liting
    Zhang, Kun
    APPLIED SCIENCES-BASEL, 2023, 13 (06):