ON A DIRECTIONALLY REINFORCED RANDOM WALK

被引:8
|
作者
Ghosh, Arka P. [1 ]
Rastegar, Reza [2 ]
Roitershtein, Alexander [2 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
LIMIT; RULES;
D O I
10.1090/S0002-9939-2014-12030-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalized version of a directionally reinforced random walk, which was originally introduced by Mauldin, Monticino, and von Weizsacker. Our main result is a stable limit theorem for the position of the random walk in higher dimensions. This extends a result of Horvath and Shao that was previously obtained in dimension one only (however, in a more stringent functional form).
引用
收藏
页码:3269 / 3283
页数:15
相关论文
共 50 条
  • [1] Directionally reinforced random walks
    Mauldin, RD
    Monticino, M
    vonWeizsacker, H
    ADVANCES IN MATHEMATICS, 1996, 117 (02) : 239 - 252
  • [2] REINFORCED RANDOM-WALK
    DAVIS, B
    PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (02) : 203 - 229
  • [3] Limit distributions of directionally reinforced random walks
    Horvath, L
    Shao, QM
    ADVANCES IN MATHEMATICS, 1998, 134 (02) : 367 - 383
  • [4] The true reinforced random walk with bias
    Agliari, E.
    Burioni, R.
    Uguzzoni, G.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [5] Recurrence of reinforced random walk on a ladder
    Sellke, T
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 301 - 310
  • [6] Transience of Edge-Reinforced Random Walk
    Disertori, Margherita
    Sabot, Christophe
    Tarres, Pierre
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 121 - 148
  • [7] THE SCALING LIMIT OF SENILE REINFORCED RANDOM WALK
    Holmes, Mark
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 104 - 115
  • [8] VERTEX-REINFORCED RANDOM-WALK
    PEMANTLE, R
    PROBABILITY THEORY AND RELATED FIELDS, 1992, 92 (01) : 117 - 136
  • [9] Once reinforced random walk on Z x Γ
    Kious, Daniel
    Schapira, Bruno
    Singh, Arvind
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2219 - 2242
  • [10] Edge-reinforced random walk on a ladder
    Merkl, F
    Rolles, SWW
    ANNALS OF PROBABILITY, 2005, 33 (06): : 2051 - 2093