THE SCALING LIMIT OF SENILE REINFORCED RANDOM WALK

被引:1
|
作者
Holmes, Mark [1 ]
机构
[1] Univ Auckland, Dept Stat, Auckland 1142, New Zealand
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2009年 / 14卷
关键词
random walk; reinforcement; invariance principle; fractional kinetics; time-change;
D O I
10.1214/ECP.v14-1449
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the scaling limit of nearest-neighbour senile reinforced random walk is Brownian Motion when the time T spent on the first edge has finite mean. We show that under suitable conditions, when T has heavy tails the scaling limit is the so-called fractional kinetics process ,a random time-change of Brownian motion. The proof uses the standard tools of time-change and invariance principles for additive functionals of Markov chains.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [1] Scaling limit for random walk on the range of random walk in four dimensions
    Croydon, D. A.
    Shiraishi, D.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 166 - 184
  • [2] Scaling limit theorem for transient random walk in random environment
    Wenming Hong
    Hui Yang
    Frontiers of Mathematics in China, 2018, 13 : 1033 - 1044
  • [3] Scaling limit of the random walk among random traps on Zd
    Mourrat, Jean-Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (03): : 813 - 849
  • [4] Scaling limit theorem for transient random walk in random environment
    Hong, Wenming
    Yang, Hui
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (05) : 1033 - 1044
  • [5] Enhanced diffusivity in perturbed senile reinforced random walk models
    Thu Dinh
    Xin, Jack
    ASYMPTOTIC ANALYSIS, 2021, 122 (1-2) : 87 - 104
  • [6] A random walk with collapsing bonds and its scaling limit
    Hosseini, Majid
    Ravishankar, Krishnamurthi
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (01) : 29 - 38
  • [7] Free boundary dimers: random walk representation and scaling limit
    Berestycki, Nathanael
    Lis, Marcin
    Qian, Wei
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (3-4) : 735 - 812
  • [8] Scaling limit of local time of Sinai’s random walk
    Wenming Hong
    Hui Yang
    Ke Zhou
    Frontiers of Mathematics in China, 2015, 10 : 1313 - 1324
  • [9] Scaling limit and ageing for branching random walk in Pareto environment
    Ortgiese, Marcel
    Roberts, Matthew, I
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1291 - 1313
  • [10] Scaling limit of local time of Sinai's random walk
    Hong, Wenming
    Yang, Hui
    Zhou, Ke
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (06) : 1313 - 1324