Identification of Reaction Sites on Metal-Organic Framework-Based Asymmetric Catalysts for Carbonyl-Ene Reactions

被引:21
|
作者
Han, Jeehwan [1 ]
Lee, Mi Sun [1 ]
Thallapally, Praveen K. [2 ]
Kim, Min [3 ,4 ]
Jeong, Nakcheol [1 ]
机构
[1] Korea Univ, Dept Chem, Seoul 02841, South Korea
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[3] Chungbuk Natl Univ, Dept Chem, Cheongju 28644, South Korea
[4] Chungbuk Natl Univ, BK21PLUS Res Team, Cheongju 28644, South Korea
基金
新加坡国家研究基金会;
关键词
heterogeneous catalysts; metal-organic frameworks; carbonyl-ene reaction; two photon fluorescence microscopy; size selectivity; enantiomeric excess; RING-OPENING REACTION; ORGANOSILICA; CYCLIZATION; NANOSHEETS; SORPTION; EPOXIDE; SURFACE; AMINE;
D O I
10.1021/acscatal.8b04827
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The characteristics of catalytic sites in metal-organic framework (MOF)-based catalysts could be approximately classified by their location, i.e., the inside of the pore and/or on the surface of the crystal. This classification of catalytic sites in a single-MOF crystal has been widely overlooked. In particular, in a chiral MOF, the environment of any specific reaction site will vary depending on its location. Thus, pin-pointing the reaction site for a MOF-based heterogeneous catalyst is an intriguing issue. In this study, the active site of a MOF-based catalyst is revealed after a thorough investigation comparing substrate size versus reaction rate for two distinct mechanisms of carbonyl-ene reactions. Both Zn-mediated stoichiometric carbonyl-ene reactions and Ti-catalyzed carbonyl-ene reactions were performed separately and compared using homogeneous and heterogeneous media. These results could provide a clear answer to the question of locating the reaction sites within the MOF. Through this work, it became evident that the entire MOF crystal is effective; however, the inside of the pore is an important contributor to having chirality control in the stoichiometric reaction. In addition, for a catalytic reaction, our findings suggest that the substrate size is mostly irrelevant as catalysis can simply take place on the surface of the crystals. Thus, comparison of the reaction rate and substrate size may not be a valid method to ascertain whether a reaction occurs inside the MOF or on its surface. This conclusion is further supported by the effect of particle size on the reaction efficiency and the enantioselectivity along with visualization of the guest-accessible space using two-photon fluorescence microscopy.
引用
收藏
页码:3969 / 3977
页数:17
相关论文
共 50 条
  • [21] Bioinspired microenvironment modulation of metal-organic framework-based catalysts for selective methane oxidation
    Sui, Jianfei
    Gao, Ming-Liang
    Qian, Bing
    Liu, Chengyuan
    Pan, Yang
    Meng, Zheng
    Yuan, Daqiang
    Jiang, Hai-Long
    SCIENCE BULLETIN, 2023, 68 (17) : 1886 - 1893
  • [22] Strategies in Metal-Organic Framework-based Catalysts for the Aerobic Oxidation of Alcohols and Recent Progress
    Lee, Jooyeon
    Hong, Seungpyo
    Lee, Jonghyeon
    Kim, Seongwoo
    Kim, Jinho
    Kim, Min
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2021, 42 (03) : 359 - 368
  • [23] Microenvironment Modulation in Metal-Organic Framework-Based Catalysis
    Jiao, Long
    Wang, Jingxue
    Jiang, Hai-Long
    ACCOUNTS OF MATERIALS RESEARCH, 2021, 2 (05): : 327 - 339
  • [24] Metal-organic framework-based nanomaterials for biomedical applications
    Zhang, Shu
    Pei, Xibo
    Gao, Huile
    Chen, Song
    Wang, Jian
    CHINESE CHEMICAL LETTERS, 2020, 31 (05) : 1060 - 1070
  • [25] Advances in metal-organic framework-based nanozymes and their applications
    Huang, Xiang
    Zhang, Songtao
    Tang, Yijian
    Zhang, Xinyu
    Bai, Yang
    Pang, Huan
    COORDINATION CHEMISTRY REVIEWS, 2021, 449
  • [26] Removal of Radionuclides by Metal-organic Framework-based Materials
    Wang Xiang-Xue
    Yu Shu-Jun
    Wang Xiang-Ke
    JOURNAL OF INORGANIC MATERIALS, 2019, 34 (01) : 17 - 26
  • [27] Metal-organic framework-based biomaterials for biomedical applications
    Luo, Gang
    Jiang, Yanan
    Xie, Chaoming
    Lu, Xiong
    BIOSURFACE AND BIOTRIBOLOGY, 2021, 7 (03) : 99 - 112
  • [28] Metal-Organic Framework-based Nanozymes and Their Applications in Bioanalysis
    Ma, Xiao
    Zhao, Dan
    Wu, Pei-Cheng
    Lin, Ji-Hong
    Wang, Fang
    Xu, Yan-Jie
    He, Long-Long
    Liu, Xin-Yu
    Sun, Jian
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2023, 51 (06) : 922 - 933
  • [29] Electronically conductive metal-organic framework-based materials
    Kung, Chung-Wei
    Han, Po-Chun
    Chuang, Cheng-Hsun
    Wu, Kevin C. -W.
    APL MATERIALS, 2019, 7 (11)
  • [30] Biodegradable Metal-Organic Framework-Based Microrobots (MOFBOTs)
    Terzopoulou, Anastasia
    Wang, Xiaopu
    Chen, Xiang-Zhong
    Palacios-Corella, Mario
    Pujante, Carlos
    Herrero-Martin, Javier
    Qin, Xiao-Hua
    Sort, Jordi
    deMello, Andrei J.
    Nelson, Bradley J.
    Puigmarti-Luis, Josep
    Pane, Salvador
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (20)