Spin-mapping approach for nonadiabatic molecular dynamics

被引:68
|
作者
Runeson, Johan E. [1 ]
Richardson, Jeremy O. [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Phys Chem, CH-8093 Zurich, Switzerland
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 151卷 / 04期
基金
瑞士国家科学基金会;
关键词
INITIAL-VALUE REPRESENTATION; PHASE-SPACE; SEMICLASSICAL DESCRIPTION; HAMILTONIAN APPROACH; ELECTRONIC DEGREES; BOSON EXPANSIONS; QUANTUM DYNAMICS; CONDENSED-PHASE; COHERENT-STATE; SYSTEMS;
D O I
10.1063/1.5100506
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a trajectory-based method for simulating nonadiabatic dynamics in molecular systems with two coupled electronic states. Employing a quantum-mechanically exact mapping of the two-level problem to a spin-12coherent state, we use the Stratonovich-Weyl transform to construct a classical phase space of a spin vector constrained to a spherical surface whose radius is consistent with the quantum magnitude of the spin. In contrast with the singly excited harmonic oscillator basis used in Meyer-Miller-Stock-Thoss (MMST) mapping, the theory requires no additional projection operators onto the space of physical states. When treated under a quasiclassical approximation, we show that the resulting dynamics are equivalent to those generated by the MMST Hamiltonian. What differs is the value of the zero-point energy parameter as well as the initial distribution and the measurement operators used in constructing correlation functions. For various spin-boson models, the results of the method are seen to be a significant improvement compared to both standard Ehrenfest dynamics and linearized semiclassical MMST mapping, without adding any computational complexity.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Semiclassical Monte-Carlo: A first principles approach to nonadiabatic molecular dynamics
    White, Alexander
    Gorshkov, Vyacheslav
    Wang, Ruixi
    Tretiak, Sergei
    Mozyrsky, Dmitry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [32] Iterative linearized approach to nonadiabatic dynamics
    Dunkel, E. R.
    Bonella, S.
    Coker, D. F.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (11):
  • [33] Nonadiabatic ab initio molecular dynamics including spin-orbit coupling and laser fields
    Marquetand, Philipp
    Richter, Martin
    Gonzalez-Vazquez, Jesus
    Sola, Ignacio
    Gonzalez, Leticia
    FARADAY DISCUSSIONS, 2011, 153 : 261 - 273
  • [34] Machine Learning Mapping Approach for Computing Spin Relaxation Dynamics
    Shakiba, Mohammad
    Philips, Adam B.
    Autschbach, Jochen
    Akimov, Alexey V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 16 (01): : 153 - 162
  • [35] Semiclassical implementation of the mapping Hamiltonian approach for nonadiabatic dynamics using focused initial distribution sampling
    Bonella, S
    Coker, DF
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (10): : 4370 - 4385
  • [36] Geometric vector potentials from nonadiabatic spin dynamics
    Baltanas, J. P.
    Saarikoski, H.
    Reynoso, A. A.
    Frustaglia, D.
    PHYSICAL REVIEW B, 2017, 96 (03)
  • [37] Nonadiabatic molecular dynamics under adiabatic representation
    Zhen, Sun
    Xiang, Lu
    Sheng, Li
    Zhong, An
    ACTA PHYSICA SINICA, 2024, 73 (14)
  • [38] Ab Initio Nonadiabatic Quantum Molecular Dynamics
    Curchod, Basile F. E.
    Martinez, Todd J.
    CHEMICAL REVIEWS, 2018, 118 (07) : 3305 - 3336
  • [39] METHODS FOR MOLECULAR-DYNAMICS WITH NONADIABATIC TRANSITIONS
    COKER, DF
    XIAO, L
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (01): : 496 - 510
  • [40] PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics
    Fedorov, Dmitry A.
    Seritan, Stefan
    Fales, B. Scott
    Martinez, Todd J.
    Levine, Benjamin G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (09) : 5485 - 5498