On Comparing and Classifying Several Independent Linear and Non-Linear Regression Models with Symmetric Errors

被引:41
|
作者
Pan, Ji-Jun [1 ]
Mahmoudi, Mohammad Reza [2 ]
Baleanu, Dumitru [3 ]
Maleki, Mohsen [4 ]
机构
[1] Normal Univ, Coll Math, Dianxi Sci & Technol, Lincang 677000, Peoples R China
[2] Fasa Univ, Fac Sci, Dept Stat, Fasa 7461686131, Iran
[3] Cankaya Univ Balgat, Fac Art & Sci, Dept Math, TR-06530 Ankara, Turkey
[4] Shiraz Univ, Fac Sci, Dept Stat, Shiraz 7194685115, Iran
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 06期
关键词
comparison; Friedman test; linear regression; nonlinear regression; sign test; symmetric errors; Wilcoxon test; SIMULTANEOUS CONFIDENCE BANDS; EQUALITY; TESTS;
D O I
10.3390/sym11060820
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many real world problems, science fields such as biology, computer science, data mining, electrical and mechanical engineering, and signal processing, researchers aim to compare and classify several regression models. In this paper, a computational approach, based on the non-parametric methods, is used to investigate the similarities, and to classify several linear and non-linear regression models with symmetric errors. The ability of each given approach is then evaluated using simulated and real world practical datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The symmetric galerkin BEM in linear and non-linear fracture mechanics
    Frangi, A
    Maier, G
    BOUNDARY ELEMENT ADVANCES IN SOLID MECHANICS, 2003, (440): : 167 - 204
  • [42] EFFECT OF ERRORS IN INDEPENDENT VARIABLES IN LINEAR-REGRESSION
    DAVIES, RB
    HUTTON, B
    BIOMETRIKA, 1975, 62 (02) : 383 - 391
  • [43] Use of the linear regression method to evaluate population accuracy of predictions from non-linear models
    Yu, Haipeng
    Fernando, Rohan L.
    Dekkers, Jack C. M.
    FRONTIERS IN GENETICS, 2024, 15
  • [44] Genome-based prediction of Bayesian linear and non-linear regression models for ordinal data
    Perez-Rodriguez, Paulino
    Flores-Galarza, Samuel
    Vaquera-Huerta, Humberto
    del Valle-Paniagua, David Hebert
    Montesinos-Lopez, Osval A.
    Crossa, Jose
    PLANT GENOME, 2020, 13 (02):
  • [45] THE DOSE-RESPONSE CURVE (DCR) TO SECRETIN IN THE DOG - COMPARISON OF SEVERAL MODELS FITTED BY NON-LINEAR REGRESSION
    COUCHET, P
    VERINE, HJ
    DIGESTIVE DISEASES AND SCIENCES, 1983, 28 (10) : 931 - 931
  • [46] Neural networks and non-linear regression
    Stein, WE
    Dattero, R
    Mizzi, PJ
    DECISION SCIENCES INSTITUTE 1998 PROCEEDINGS, VOLS 1-3, 1998, : 1075 - 1077
  • [47] NON-LINEAR TIME SERIES REGRESSION
    HANNAN, EJ
    JOURNAL OF APPLIED PROBABILITY, 1971, 8 (04) : 767 - &
  • [48] Non-linear regression with multidimensional indices
    Bansal, NK
    Hamedani, GG
    Zhang, H
    STATISTICS & PROBABILITY LETTERS, 1999, 45 (02) : 175 - 186
  • [49] Further notes on non-linear regression
    Neyman, J
    BIOMETRIKA, 1926, 18 : 257 - 262
  • [50] A CONTINUATION METHOD FOR NON-LINEAR REGRESSION
    DEVILLIERS, N
    GLASSER, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) : 1139 - 1154