Localized Alfvenic solutions of nondissipative and compressible MHD

被引:0
|
作者
Chanteur, G [1 ]
机构
[1] Ctr Etud Environm Terrestre & Planetaires, Velizy, France
关键词
D O I
10.5194/npg-6-145-1999
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Alfvenic solutions of nondissipative MHD are entirely determined by their magnetic configuration. With the supplementary assumption of incompressibility any solenoidal field can be used to construct an Alfvenic solution. It is demonstrated that for nondissipative and compressible MHD the energy equation constrains the magnetic field of Alfvenic solutions to have a constant strength along field lines. Some topological solitons known in nondissipative and incompressible MHD do not have this property. New localized axisymmetric Alfvenic solutions of nondissipative and compressible MHD are explicitly constructed.
引用
收藏
页码:145 / 148
页数:4
相关论文
共 50 条
  • [41] Density statistics of compressible MHD turbulence
    Lazarian, A.
    Kowal, G.
    Beresnyak, A.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2007, 2008, 385 : 3 - 11
  • [42] Boltzmann algorithms for the compressible MHD equations
    Croisille, JP
    Khanfir, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1996, 323 (02): : 103 - 110
  • [43] Generation of compressible modes in MHD turbulence
    Jungyeon Cho
    A. Lazarian
    Theoretical and Computational Fluid Dynamics, 2005, 19 : 127 - 157
  • [44] Magnetic reconnection in a compressible MHD plasma
    Hesse, Michael
    Birn, Joachim
    Zenitani, Seiji
    PHYSICS OF PLASMAS, 2011, 18 (04)
  • [45] Generation of compressible modes in MHD turbulence
    Cho, JY
    Lazarian, A
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2005, 19 (02) : 127 - 157
  • [46] MAGNETIC FIELD-LINE RECONNEXION BY LOCALIZED ENHANCEMENT OF RESISTIVITY .1. EVOLUTION IN A COMPRESSIBLE MHD FLUID
    UGAI, M
    TSUDA, T
    JOURNAL OF PLASMA PHYSICS, 1977, 17 (JUN) : 337 - 356
  • [47] The Nature of Elsasser Variables in Compressible MHD
    Magyar, N.
    Van Doorsselaere, T.
    Goossens, M.
    ASTROPHYSICAL JOURNAL, 2019, 873 (01):
  • [48] Global Classical Large Solutions with Vacuum to 1D Compressible MHD with Zero Resistivity
    Yu, Haibo
    ACTA APPLICANDAE MATHEMATICAE, 2013, 128 (01) : 193 - 209
  • [49] Decay-in-time of the highest-order derivatives of solutions for the compressible isentropic MHD equations
    Huang, Wenting
    Lin, Xueyun
    Wang, Weiwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (02)
  • [50] Global classical solutions of 3D isentropic compressible MHD with general initial data
    Liu, Yang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1777 - 1797